Training Artificial Neural Networks
to Pronounce Arabic Text

by
Nizar Radi Mabroukeh

Supervisor ;#7

Dr. Khalil el Hindi Lol el 01 25

Co-Supervisor

Dr. Abdulraouf Al-Hallaq

Submitted in Partial Fulfiliment of the Requirements for the
Degree of Master of Science in
Computer Science

Faculty of Graduate Studies
University of Jordan

June 1998

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

This thesis was successfully defended and approved on 27/ 6/1998

Examination Committee

Dr. Khalil el Hindi, Chairman
Asst. Prof. of Artificial Intelligence

Dr. Abdulraouf Al-Hallaq, Member
Asst, Prof. of Interconnection Networks

Dr. Yahia Halabi, Member
Prof. of Numerical Simulation

Dr. Ahmad Sharieh, Member
Asst. Prof. of Parallel Processing

Dr. Walid Salameh, Member
Asst. Prof. of Neural Networks

Signature

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

it

1S009 SS9y JO BIus)D - Ueplor Jo AlsIBAIUN JO AkeiqiT - PaABSaY SIYDIY |1V

... Nizar Qabbani.

To the memory of the great Arab poet.....

Acknowledgement

1 am very grateful for the guidance and help that my supervisor Dr. Khalil el Hindi
and Co-supervisor Dr. Abdulraouf Al-Hallaq provided.
1 am in debt to Dr. Mohammad Al-Anani, Chairman of the Phonetics Research Center at the
University of Jordan and all the persons working there for their help and enlightenment, they
made me realize how great our language is.
I would also like to thank Dr. Walid Salameh at PSCUT, the staff members at the Computer
Science Department at JU and my friends and colleagues in the graduate program. Also,
thanks to Haitham Ibrahim for taking the time and putting the effort in reviewing and
checking the flow of thoughts in this thesis, and Muhannad Tayyem for helping me learning
C language.
Thank you my mother for making me the man I am, and my father for his belief and trust in
me, my sisters, Lucy and Suzan for their help and for being there when I felt down,
Thank you Amjad Hudaib, Issa Qunbor, Aseel Al-Anam, Khalid Waleed, Ziad Al Masri and
“Ansar Magdalena” Khoury.
The followings have also lent a helping hand: Dr. Martin Riedmiller (University of
Karlsruhe, Germany) who helped me understand Rprop and provided me with the latest
modifications, Lars Kindermann (University of Erlangen, Germany) who allowed me to test-
run his commercial neural network F.A.S. T, Dr. Terry Sejnowski (Salt Lake Institute and
UCSD, USA) for explaining more about how NETtalk learns, and finally Dr. Jeff Elman for

providing me with information about Recurrent nets.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Contents

Dedication. ..., it
Acknowledgement v
Listof Contents. v
List of Appendices. Vil
Listof Tables. viii
List of Fagures.o X
ADStract. ... xi
Chapter 1: Introduction................................... ... 1
1.1 Brief Introduction and History of Artificial Neural Networks................... 1
1.2 Anthropomorphism, The Biological Metaphor.................................. 5

1.2.1 Biological Background.......................ooi 5

1.2.2 Mapping Biological Neural Networks onto Artificial Neural Networks.... 7

1.3 Importance and Applications of Artificial Neural Networks. 9 -
1.4 Structure of ThesiS. ... 12
Chapter 2: Background Information on Artificial Neural Networks......... . 13
2.1 Qutline and Architecture of Artificial Neural Networks........... ETTPP I 13
2.1.1 Input and Qutput Patterns... ... 15
2.1 2 COMNECtIONS. ... 16
2.1.3 Processing Elements (PEs) ..., 16

22 LAMNINE. ... 21

2.3 Error Backpropagation and Gradient Descent Supervised Leamning............ 22

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Vi

23 1BP Algorithm. ... 27
2.3.2 Problems and Pitfalls of Backpropagation (BP)............................. 28
2.4 Resilient Backpropagation.... ... 31
2.4.1 Rprop Algorithm. ... 34
Chapter 3; Literature Review. ... 36
3.1 Research in Speech Recognition and Text Synthesis. .I 36
3.2 A Neural Network that Learns to Pronounce English Text: NETtalk.......... 42
3. 2.1 NETtalk’s Topology. ..o, 42
3.2.2 Representation in NETtalk. ... 43
323 Leamning in NETtalk...................o 45
3. 24 NETtalk Performance......... ..ot 47
3.2.5 Conclusions about NETtalk. ..., 49
Chapter 4: A NETtalk-like Neural Network to Pronounce Arabic Text... .. 51
4.1 Duplicating NETtalk... ... 51
4.2 The Topology of NETtalk2.............. 51
4.3 Representation of Input and Qutput in NETtalk2................................ 53
4.4 How NETtalk2 WOrKS. ..o 53
45 Learning in NETtalk2. ... 54
4.6 Training NETtalk2 on English Text.. PP PPPPPIP 55

4.6.1 Duplicating Sejnowski and Rosenberg's Expeniments....................... 62
4.7 Training NETtalk2 on Arabic Text... ... 63

4 7.1 Measuring NETtalk2's performance on Arabic text............................ 77

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

vii

4.7.2 Using Multiple Hidden Layers in NETtatk2 with Arabic Text............... 82

4.7.3 Configuring NETtalk2 as a Recurrent Neural Network for Pronouncing

ATADIC TOXE. ... e s 83
Chapter 5: Analysis of NETtalk2 Performance on Arabic Text................. 85
5.1 Analysisof the Input.................. 85

5.2 Output Analysis and Thorough Investigation of NETtalk2....................... 87
5.2.1 Non-convergence in NETtalk2................ 94
5.3 Using Different Numbers of Input Groups in NETtalk2.........................o.. 100

Chapter 6: Conclusion and Future Work... 103

6.1 Summary and Conclusion............... oo 103
6 2Future Work.o 108
References. o 10%
Appendices

Appendix A: Set of Phonemesusedby NETtalk2................................... 119
Appendix B: Format of the .wav Sound Files............................. 126
Appendix C: Code for BP and Rprop algorithms used with NETtalk2.............. 129

Appendix D: Training and Generalization Sets used with NETtalk2................ i4%

Abstract in Arabic. .. 162

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

vii

List of Tables
Table 4.1; Training NETtalk2 on the English alphabet................................ 56
Table 4.2: Generalization test on NETtalk2 after training on 40 words............. 57

Table 4.3: Training NETtalk2 using BP with different sizes of the input window. 59
Table 4.4: Generalization results on a small Englishtext............................. 60

Table 4.5 Generalization results of training NETtalk2 on a simple English story. 61

Table 4.6: Training NETtalk2 on the Arabic alphabet................................. 65
Table 4.7: Generalization results. ... 67
Table 4.8: Generalization results on the final extended text of Example A2........ 68
Table 4.9: Learning Rate vs. Convergence Speed..................cooii 68
Table 4.10: Results of generalization tests on a small Arabic story.................. 70

Table 4.11a: Generalization results of NETtalk2 on a children Arabic story using

Table 4.12a: Generalization tests after training NETtalk2 on continuous text
USING S1Z€-T WINAOW. ..o e, 73

Table 4.12b; Generalization tests after training NETtalk2 on continuous text

using different window SIZES...............viiii 73
Table 4.13: Generalization tests on a continuoUS text.voeiiiirieainnnn. 74
Table 4.14: Generalization test on a continuous text of 300 Arabic words........... 75

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Table 4.15a: NETtalk2's performance on Arabic text using difterent input
window sizes with BP ... 76

Table 4 15a; NETtalk2’s performance on Arabic text using different input

window sizes With RPIOp..............oii 77
Table 4.16: Training NETtalk2 on the Arabic alphabet using BP and Rprop...... 81
Table 5.1: Tdentifying “n”.o 89
Table 5.2: Identifying “©7 ... 90

Table 5.3; Generalization tests when NETtalk2 was trained on example A7 with

all consonant Jetters. ... 98
Table 5.4: Generalization tests when NETtalk2 was trained on text with correct
PIOMUNCIATION ... ettt it e e e e e 98
Table 5.5: Generalization tests on example A8 with all consonant

B TS, .. it e e e 99

Table 5.6: Generalization tests on example A8 with correct pronunciation........... 100

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

List of Figures

Figure 1.1: A juxtaposition of a neuron grown on a microprocessor................
Figure 1.2: A bref history of neural networks..
Figure 1.3: Cell body of aneuron.............c.ocoooeviiniiocce e
Figure 2.1: A typical neural network. ...,
Figure 2.2: Sample transfer functions.......................o s
Figure 2.3: Gaussian (Bell-shaped) function...
Figure 2.4: Adjusting the weights by Gradient Descent..............................
Figure 2.5: Problem of Gradient Descent...................ccocoooiiiiiiiieee e

Figure 2.6 Pseudocode for error BackPropagation................................

Figure 2.7 pseudocode for Resilient backpropagation......................................

Figure 3.1; Schematic drawing of NETtalk architecture......................................
Figure 4.1 Diagram of NETtalk2 system......................coooiiiiiiiiii o,

Figure 4.2: Training epochs vs. Window Size......................oiviv

Figure 4.3: Training epochs vs. Momentum.........................cooooiviooi,

Figure 4.4 Convergence speed versus LearningRate.... ...

Figure 4.5: Jordan Recurrent Neural Network model. ...

13

19

20

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Xi

Abstract

Training Artificial Neural Networks to
Pronounce Arabic text

b}’
Nizar Radi Mabroukeh

Supervisor
Asst. Prof. Khalil el Hindi

Co-Supervisor

Asst. Prof. Abdulraouf Al-Hallaq

Humans have always wondered if it 1s possible to build the Artificial Brain. Artificial
Neural Networks have been known to us for more than half a century by now, and with the
rising of the computing age, it made realizing these human brain models possible to an
extent. Ever since the 80s, Artificial Neural Networks were used to mimic humanly
processes in different ways. These models are significant in their ability to learn, memorize
and adapt to changes on their own.
In this research we take a closer look into NETtalk, the neural network that pronounces
English text aloud, we build a matching model (NETtalk2) and try to train it to pronounce
Arabic text, using “Error Backpropagation” and “Resilient Backpropagation”.
Results reveal that, a model like NETtalk is unable to pronounce Arabic text, as it fails either
in learning or in generalization;, due to reasons that are sole characteristics of Arabic

language and grammar that cannot be ignored. We point out these reasons, discuss them

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

xii

thoroughly and present examples on each one. We also present examples on training
NETtalk2 using two hidden layers in order to increase feature representation in the net. In
this case generalization performance was improved by 8% using two hidden layers of 80
units each instead of one, reaching 72% successful generalization on the average.

When recurrent learning was experimented with (using the Jordan model), NETtalk2
showed good results and generalization performance improved by 12%, reaching 82%

successful generalization on the average.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Chapter 1

Introduction

1.1 Brief Introduction and History of Artificial Neural Networks:

The term neural network, originally referred to a network of interconnected

neurons in the human brain. The average human brain consists of 15x10'® neurons.

To try to understand the brain function, various models have been proposed. Probably the
best known was the work of Hodgkin and Huxley on the modelling of the giant squid
axon. They methodically collected empirical data, postulated the mechanism of ion
transport channels, formulated mathematical and circuit models, and then developed the
voltage clamped technique to validate their models. Certainly, modelling work done by
many others, such as Von Bekesy’s cochlear microphonics work, can be cited as
contributing to the understanding of the brain function. For example, the discovery of
special feature detecting cells in the visual cortex by Hubel and Wiesel has had a profound
impact on the understanding of information processing in the visual system, and on the
field of pattern recogmtion (Lau, 1992).

We are now dealing with the ultimate question. How does the brain work? Neurobiologists
have taken the bottom-up approach by studying the stimulus-response characteristics of
single neurons and networks of neurons. On the other hand, psychologists have taken the
top-down approach by studying brain function from the cognitive and behavioural level.

They are gradually and incrementally getting a better idea of how the brain works, both at

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

the single neuron level and at the behavioural level. However, it may take another fifty
years before we have a solid, complete microscopic, intermediate, and macroscopic view
of how the brain works. We seek solutions to problems that are difficult with today’s
digital computing technology, problems that are easily solved by people and animals. We
try to build more brainlike computers out of neuronlike parts.

Figure 1.1 shows a neuron (the basic processing element in the human brain) compared

with a Motorola microprocessor.

3 computers and human-made computers are made.
A single nerve cell (neuron) was taken out of the
o nervous system and allowed to grow on the
surface of a Motorola 63000 microprocessor

¥ (Campbetl ,1993).

It was this view that led to the development of many of the earlier models of neurons and
artificial neural networks. McCullogh and Pitts in the 1940s (McCulloch ef a/, 1943)
showed that the neuron can be modelled as a simple threshold device to perform logic
functions. In the same time frame, relationships among engineering principles, feedback,
and brain function were expounded by Wiener as the principle of Cybernetics. By the late
1950s and early 1960s, neuron models were further refined into Rosenblatt’s Perceptron
(Rosenblatt, 1959), Widrow and Hoff’s ADALINE (ADAptive LINear Element) (Widrow
el al, 1960), and Steinbuch’s Learning Matrix. The Perceptron received considerable

excitement when it was first introduced because of its conceptual simplicity. However, that

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

excitement was short lived when Minsky and Papert proved mathematically that the
Perceptron cannot be used for complex logic functions (Minsky ¢f al, 1969); because it
cannot work with problems that are not linearly separable, like the famous XOR problem.
On the other hand, the fate of Adaline was quite different. The Adaline is a weighted sum
of the inputs, together with a Least Mean Square (LMS) algorithm to adjust the weights to
minimize the difference between the output and the desired signal. Because of its linear and
adaptive nature, this technique has developed into a powerful tool for adaptive signal
processing, which is used in equalization, echo and noise cancellation, adaptive beam
forming, and adaptive control. The reason is primarily due to rigorous, mathematical
foundation of LMS algorithm. Because of that, it has stood the test of time.

Today the term artificial neural networks has come to mean any computing architecture
that consists of massively parallel interconnections of simple “neural” processors; that is
why it is also called PDP (Parallel Distributed Processing).

The present impetus in artificial neural networks research is due in part to the paper John
Hopfield published in 1982 in the Proceedings of the National Academy of Sciences
(Hopfield, 1982). Hopfield gave a new and powerful kickstart in artificial neural networks
research and development. In his paper, he presented a model of neural computation that is
based on the complete interaction of neurons. The mode! consisted of a set of first order
(nonlinear) differential equations that minimize a certain “energy" function. He agreed that
there are emergent computational capabilities at the network level that are nonexistent at
the single neuron level. This kind of artificial neural network is now known as Hopfield

Net,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Certainly Hopfield was not the first to recognize the neuron’s spatial and temporal
integration properties, which were known in the very early days of neurophysiology.
Furthermore, the idea that neurons organize themselves to perform the necessary functions
was promoted by a number of researchers. During the 1970s, when no one else was
working on artificial neural networks, Steven Grossberg at Boston University and Teuvo
Kohonen at Helsinki University were making significant contributions. Grossberg, together
with Gail Carpenter, have developed an artificial neural network architecture they call
Adaptive Resonance Theory (ART), based on the ideas that the brain spontaneously
organizes itself into recognition codes (Grossberg et al, 1992). The dynamics of the
network were also modelled by first-order differential equations. Meanwhile, Kohonen was
developing his ideas on self-organizing maps, based on the idea that neurons organize
themselves to tune to various and specific algorithms (Kohonen, 1990). In the early 1970s,
Paul Werbos discovered the mathematical principles of the backpropagation algorithm
while studying problems in the social sciences. In the mid 1980s, David Rumelhart and his
colleagues published their landmark books on Parallel Distributed Processing (PDP), which
established the backpropagation algorithm and feedforward layered networks as the major
paradigm of the field (Rumelhart et af, 1986). This and earlier works have finally
galvanized a large segment of the scientific community into thinking in terms of collective
neural computation rather than single neurons.

Figure 1.2 show a brief history of ANN.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Present

Late Infancy

Stunted Growth

Early Infancy

Birth

Gestation

Conception

Late 80s to now

1982

1969

late 50s, 60s

1956
1950s
1949
1943
1936
1890

Interest explodes with conferences, articles,
simulations, new companies and government
funded research,

Hopfield at National Academy of Sciences.
Some research continues.

Minsky & Papert’s cnitique, Percepitrons.
Excessive hype.

Research efforts expand.

Al and Neural Computing fields launched.
Darmouth Summer Research Project.

Age of computer simulation.

Hebb, The Organization of Behaviour.
McCulloch & Pitts paper on neurons.
Turing uses brain as computing paradigm.

James, Psychology (Briefer Course).

Figure 1.2: A brief histery of neural networks (Nelson ef af, 1993).

1.2. Anthropomorphism, The Biological Metaphor:

1.2.1 Biological Background:

Antificial Neural Networks are based on the biological nervous system of animals

and are made to mimic human neural processes.

Neurons in animals are cells specialized for transmitting signals from one location in the

human body to another, and are the functional units of the nervous system.

Neurons occur in a variety of sizes and shapes, nevertheless, most of them contain four

parts as shown in Figure 1.3: (1) the cell body; (2) the dendrites; (3) the axon, and (4) the

axon terminals.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Dendrites (reveplive regions)

_ Cell body

g - : tic terminal
- L & /Symy
Schwann W J
cell Tbegye
-,
Nodes of Ramvier /
Terminal branches

Figure 1.3: (a) The cell body of the neuron. (b) Scanning electron micrograph of a neuron (Campbell,1993).

Dendrites convey signals toward the cell body and are short, numerous and extensively
branched (indeed, the name is derived from the Greek dendron, “tree”) where the cell is
most likely stimulated. Whereas axons conduct messages away from the cell body. The
portion of the axon closest to the cell body plus the part of the cell body where the axon
is joined is known as the initial segment (axon hillock), where electric signals are
generated and then propagated away from the cell body along the axon to other near
cells through axon terminals (Telodendria), that ends with synaptic knobs which release
chemicals called neurotransmitters, that help to relay nervous signals to other cells.
These chemical messages defuse across the synapse, a narrow gap between the synaptic

knob and the dendrites of another neuron (Campbeli, 1993) (Vander ef al, 1994).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Electric signals are generated and conveyed through the axon to other neighbour cells only
if the result input of signals at the dendrites exceeds a certain threshold. In (Vander ef al,
1994), threshold is defined as: “Membrane potential to which excitable membrane must be

depolarized to initiate an action.”

1.2.2 Mapping Biological Neural Networks onto Artificial Neural Networks:

Starting from the biological model in the previous section, we can develop a
metaphor, despite the fact that anthropomorphism can lead to misunderstanding when the
metaphor is carried too far. This explains why some researchers are deliberately calling
their efforts “Connectionism” (Nelson et al, 1993).

Now let us try to map biological neural networks over the model of artificial neural
networks.
We call our neuron a Processing Element (PE), or a node. These artificial neurons bear
only a modest resemblance to the real things, since it is easier to observe and measure
electrical activity than it is to understand the chemical properties. We know that there are
at least 150 processes performed by neurons in the human brain. PEs model approximately
three of these processes as follows (Nelson ef af, 1993):

» Evaluate the input signals, determining the strength of each one.

o Calculate the total for the combined input signals and compare that total to some

threshold level.

o Determine what the output should be.

In the human brain, signals come into the synapses. These are the inputs, they are

“weighted”, that is, some signals are stronger than others. Some signals excite (are

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

positive and have positive weights), and others inhibit (are negative and have negative
weights). The effects of all weighted inputs are summed, which also happens in artificial
neural networks. If the sum is equal to or greater than the threshold for the neuron, then
the neuron fires (gives output). This is an “all-or-nothing” situation; either a neuron fires or
does not fire.

The ease of transmission of signals is altered by activity in the nervous system. Synapses
are susceptible to fatigue, oxygen deficiency, and agents such as anaesthetics. These events
create a resistance to the passage of impulses, Other events may increase the rate of firing.
This ability to adjust signals is a mechanism for learning, Threshold functions in artificial
neural networks integrate the energy of incoming signals over space and time. In artificial
neural networks synapses are represented as weights on the connections among PEs,
events that affect the transfer of signals between synapses are represented as bias inputs to
PEs. This bias term or forcing term could also be a forgetting term, when a system needs
to unlearn something.

As mentioned, weights are like the varying synaptic strengths, as some inputs are more
important than others in the way they combine to produce an impulse. Weights are
adaptive coefficients within the network that determine the intensity of the input signal.
Think of them as a measure of the connection strength (see Figure 2.1). The initial weight
of a PE can be modified in response to various inputs and according to the network’s own
rules for modifications. It can also be drawn from a probability density function (Salameh,

1996).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1.3 Importance and Applications of Artificial Neural Networks:

Artificial Neural Networks (ANNs) occur in many fields and have various

applications.

a

.
&

1

sl
L

.
R

C

Some of the operations that artificial neural networks perform include (Simpson, 1992):

e Classification - an input pattern is passed to the network, and the network produces a
representative class as output.

s Pattern matching (Heterassociative)- an input pattern is passed to the network, and the
network produces the corresponding output pattern.

o Pattern completion (Autoassociative)- an incomplete pattern is passed to the network,
and the network produces an output pattern that has the missing portions of the input
pattern filled in.

e Noise removal - a noise-corrupted input pattem is presented to the network, and the
network removes some (or all) of the noise and produces a cleaner version of the input
pattern as output.

s Optimization - an input pattern representing the initial values for a specific optimization
problem is presented to the network, and the network produces a set of vanables that
represents an optimal solution to the problem.

» Control - an input pattern represents the current state of a controller and the desired
response for the controller, and the output is the proper command sequence that will

create the desired response.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

10

These operations fall into any of the following three primary situations where neural

networks are advantageous (Simpson, 1992}

1. Situations where only a few decisions are required from a massive amount of data (e.g.,
speech and image processing). |

2. Situations where nonlinear mappings must be automatically acquired (e.g., loan
evaluations and robotic control).

3. Situations where near-optimal solution to a combinatorial optimization problem is

required quickly {(e.g., airline scheduling and telecommunication message routing).

Some commercial products relevant to our study that use ANNs are (Nelson ef af, 1993):

1. Intel’s word recognizer: Intel™ built a system that capitalizes on the expressiveness of
human speech. By limiting the system vocabulary to a single speaker at a time and
limting the vocabulary to around a hundred isolated words or phrases, the speech
recognition system provides better than 99% accuracy for the speaker who trains the
system. This voice-controlled data entry system has been used in various manufacturing
applications since 1983,

2. NestorWriter. A handwriting recognizer that runs onan IBM PC AT. Input is in the
form of handwriting on a digitized pad. After being trained on a set of typical
handwriting samples, NestorWriter can interpret handwriting which it has not seen
previously, and this can be accomplished in spite of changes in scale, shifts in position,

distortions, and idiosyncrasies in style.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

11

As any engineering technique, artificial neural networks have their own set of advantages

and disadvantages. The natural question is: What can artificial neural networks do that

traditional signal processing techniques cannot do? Certainly speed of computation is a

factor. In traditional single processor Von Neumann computers, the speed is kmited by the
propagation delay of the transistors. Artificial neural networks, on the other hand, because
of their massively parallel nature, can perform computations at a much higher rate. Because
of their adaptive nature, artificial neural networks can adapt to changes in the data and learn
the characteristics of input signals. Furthermore, because of their nonlinear nature, ANNs
can perform functional approximation and signal-filtering operations, which are beyond
optimal linear techniques. ANNs can be used in pattern classification by defining nonlinear
regions in the feature space.

Artificial neural networks require a different set of skills from that required by conventional
programming. Information is not stored in a single memory location, but is distributed
throughont the system. This feature provides robustness for artificial neural networks, you
could lose a percentage of the PEs and still not lose the information stored there. The
power is in the collective computational abilities. The result is a new information-
processing paradigm, namely, Associative Memory. (Nelson et a/, 1993).

Still though, artificial neural networks have their own limitations. The nonlinear sigmoidal
functions used in layered networks cause muitiple minima to appear during learning, and
one is never sure whether the system has reached its global minimum. Stochastic techniques
such as “simulated annealing” can help the situation but often require excessive

computation time. As in adaptive signal processing, there is always trade-off between the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

12

speed and the stability of convergence. Digital computer simulations of neural nets are still

too slow for practical use in large-scale problems (Lau, 1992).

1.4 Structure of the Thesis:

Scientific research in ANNGs is divided into two fields. Some scientists study neural
networks to mimic the human brain, while others try to model the human brain to be able
to understand more how it works, to help people who suffer from brain related iliness and
disease. In either case, we believe that before indulging into Artificial Neural Networks,
one has to understand the biology behind it.

Now, after a biological model was presented, we move on to talk about the structure of a
typical neural network and how it learns and adapts to changes in Chapter 2. We will also
present the new Riedmiller’s learning algrothim called ‘Resilient Backpropagatoin.’

In Chapter 3, we will review the literature in the fields of speech recognition and text
synthesis, using Expert Systems and ANNs. We will also introduce NETtalk, the famous
text synthesis ANN by Sejnowski and Rosenberg. The core subject will be discussed in
Chapter 4, in which a NETtalk-like ANN will be constructed to pronounce Arabic text,
tested, performance-evaluated and discussed. Then its results will be analized and
investigated further in Chapter 5. Finally, results will be summerized and recommendations

put forward in Chapter 6.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

13
Chapter 2
Background Information on Artificial

Neural Networks

2.1 Outline and Architecture of Artificial Neural Networks:

Artificial neural networks (ANNs) can be thought of as a “Black Box”, devices that
accept input and produce output. Inside this black box, an ANN consists of processing

elements and weighted connections. Figure 2.1 illustrates a typical neural network.

Input

Figure 2.1: A typical neural network {Simpson, 1992).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

14

Each layer in a neural network consists of a collection of Processing Elements PEs. Each
PE collects the values from all of its input connections, performs a predefined mathematical
operation, and produces a single output value. The neural network in Figure 2.1 has three
layers: F,, which consists of the PEs {x,, Xz, Xs}; Fy, which consists of the PEs {y), y2}, and
F,, which consists of the PEs {z, 2z, z3}, from bottom to top, respectively. The PEs are
connected with weighted connection from every F, PE to every F, PE, andthereisa
weighted connection from every F, PE to every F; PE not shown in the figure for clarity.
Each weighted connection (often synonymously referred to as either a connection or 2
weight) acts as both a label and a value. As an example, in Figure 2.1 the connection from
the PE x, to the PE y; is the connection weight wi; (from x; to y2). The connection weights
store information. The values of the connection weights is often determined by a neural
network learning procedure, by adjustment of these weights, and thus the neural network is
able to learn. On the other hand, by performing the update operations for each of the PEs,
the neural network is able to recall information (Simpson, 1992).

There are several important features illustrated by the neural network shown in Figure 2.1
that apply to all neural networks:

e Each PE acts independently of all others - each PE’s output relies only on its
constantly available inputs from the abutting connections.

« Each PE relies only on local information - the information that is provided by the
adjoining connections is all a PE needs to process; it does not need to know the state
of any of the other PEs where it does not have an explicit connection.

e The large number of connections provides a large amount of redundancy and

facilitates a distributed representation.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

I5

The first two features allow neural networks to operate efficiently in paraliel. The last
feature provides neural networks with inherent fault-tolerance and generalization qualities
that are very difficult to obtain from typical computing systems. In addition to these features,
through proper arrangement of neural networks, introduction of nonlinearity in the
processing elements, and use of the appropriate learning rules, neural networks are able to
learn arbitrary nonlinear mappings. This is a powerful attribute.

Neural networks consist of three principle elements (Simpson, 1992):

1. Topology: How a neural network is organized into layers and how those layers are
connected.

2. Learning and memory: How information is stored in the network.

3. Recall: How stored information is retrieved from the network.

An artificial neural network is formed mainly of three components, described in the

following three sub-sections.

2.1.1 Input and Output Patterns:

Some artificial neural networks require only single patterns of data, and others require
pattern pairs. The dimensionality of the input pattern is not necessarily the same as the
output pattern. When a network works only with single patterns it is an autoassociative
network. When it works with pattern pairs, it is heteroassociative (Simpson, 1992). In this
case, the pattern pair is called “the training vector.” One of the patterns is used for input and
the other is used to check the correctness of the output for error computation and

backpropagation in the learning phase.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

16

2.1.2 Connections:

A neural network is equivalent to a digraph, with edges (connections) between nodes
(PEs) that allow information to flow only in one direction. Information flows through the
digraph along the edges and is collected at the nodes. Neural Networks include a weight
with each connection that modulates the amount of output signal passed from one PE down
the connection to the adjacent PE. So, a connection both defines the information flow
through the network and modulates the amount of information passing to PEs.

Connection weights that are ﬁositive-valued are excitatory connections, those with negative
values are inhibitory connections, A connection weight that has a zero value is the same as

not having a connection present (Simpson, 1990).

2.1.3 Processing Elements (PEs):

The PE is the portion of the neural network where all the computing is performed. Each PE
collects the information that has been sent down its abutting connections and produces a
single output value. There are two important qualities that a PE must possess (Simpson,

1990):

1. PEs require only local information. All the information necessary for a PE to produce an
output value is present at the inputs and resides within the PE. No other information about
other values in the network is required.

2. PEs produce only one output value. This single output value is propagated down the
connections from the emitting PE to other receiving PEs, or it will serve as an output from

the network when the PEs are at the output layer.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

17

A PE is made up of different components:

1. Input Weights: A neuron (PE) usually receives many stmultaneous inputs. Each input has
its own relative weight which gives the nput the impact that it needs on the processing
element's summation function. These weights perform the same job as the varying synaptic
strengths of biological neurons. In both cases, some inputs are made more important than
others so that they have a greater effect on the processing element as they combine to
produce a neural response.

Weights are adaptive coefficients within the network that determine the intensity of the input
signal as registered by the artificial neuron. You can consider them as a2 measure of an input's
connection strength. These strengths can be modified in response to various training sets and

according to a network's specific topology or through its learning rules.

2. Summation Function: The first step in a processing element's operation is to compute the
weighted sum of all of the inputs. Mathematically, the inputs and the corresponding weights
are vectors which can be represented as (15, 12. .. 1) and (w1, Wz . . . Wp). The total input
signal is the dot, or inner, product of these two vectors. This simplistic summation function
1s found by multiplying each component of the i vector by the corresponding component of
the w vector and then adding up all the products (Section 2.1). The result is a single
number, not a multi-element vector,

The summation function can be more complex than just the simple input and weighted sum
of products. The input and weighting coefficients can be combined in many different ways

before passing on to the transfer function. In addition to a simple product summing, the

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

18

summation function can select the mimmum, maximum, majonty, product, or several

normalizing algorithms.

3. Transfer Function: The result of the summation function, is transformed to a working

output through an algorithmic process known as the transfer function. In the transfer
function the summation total can be compared with some threshold to determine the neural
output. If the sum is greater than the threshold value, the processing element generates a
signal, ifit is less than the threshold, no signal (or some inhibitory signal) is generated. Both
types of response are significant.

The threshold, or transfer function, is generally non-linear. Linear (straight-line) functions
are limited because the output is simply proportional to the input. Linear functions are not
very useful. That was part of the problem in the earliest network models as noted in Minsky
and Papert's book Perceptrons (Minsky et al, 1969).

The transfer function could be something as simple as depending upon whether the result of
the summation function is positive or negative. The network could output zero, one and
minus one, or other numeric combinations. The transfer function would then be a "hard

limiter" or step function. See Figure 2.2 for a sample of transfer functions.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

19

Hard Limiter Ramping Function
Y Y
1
14
X } X
1
-1
x<0,y=0
x<0,y=-1 De=x<=1,y=x
Al x>=0,y=1 [E] x>1 y=1
¥ Sigmoid Functions ¥y
10“/_ 1_0"‘
] % "
T-1.0
- - x>=,y = 1-1J(1+x)
y = W(i+e™) [4] x<0.y=-1+1/1%)

Figure 2.2: Sample transfer functions (Nelson et af, 1993),

Another type of transfer functions, the threshold or ramping function, could mirror the input
within a given range and still act as a hard limiter outside that range. It is a linear function
that has been clipped to minimum and maximum values, making it non-linear. Yet another
option would be a sigmoid or S-shaped curve. That curve approaches a minimum and
maximum value at the asymptotes. It is common for this curve to be called a sigmoid when it
ranges between 0 and 1, and a hyperbolic tangent (tanh) when it ranges between -1 and 1.
Mathematically, the exciting feature of these curves is that both the function and its
derivative are continuous. This option works fairly well and is often the transfer function of

choice.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

20

Prior to applying the transfer function, uniformly distributed random noise may be added.
The source and amount of this noise is determined by the learning mode of a given network
paradigm. This noise is normally referred to as "temperature” of the artificial neurons. The
name, temperature, is derived from the physical phenomenon that as people become too hot
or cold their ability to think is affected. This process is simulated electronically by adding
noise. By adding different levels of noise to the summation result, more brain-like transfer
functions are realized. To more closely mimic nature's characteristics, some expenmenters
are using a gaussian noise source. Gaussian noise is similar to uniformly distributed noise
except that the distribution of random numbers within the temperature range is along a bell

curve (Figure 2.3).

I

Canter

Figure 2.3 Gaussian (Bell shaped) Function.

4. Scaling and Limiting: After the processing element's transfer function, the result can pass

through additional processes to perform scaling and limiting. This scaling simply multiplies a
scale factor times the transfer value, and then adds an offset. Limiting is the mechanism
which insures that the scaled result does not exceed an upper or lower bound. This limiting

is in addition to the hard limits that the original transfer function may have performed.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

2t

This type of scaling and limiting is mainly used in topologies to test biological neuron

models, such as James Anderson's brain-state-in-a-box (Nelson ¢r af, 1993).

5. PE’s Output: Each processing element is allowed one output signal which it may output
to hundreds of other neurons. This is just like the biological neuron, where there are many
inputs and only one output action. Normally, the output is directly equivalent to the transfer

function’s result.

Those previous subsections are the three main components that constitute a NN Topology.
In addition to the fact that PEs can be arranged into layers, the model described here is

missing a vital component, learning.

2.2 Learning:

Another important feature of a neural network (NN) is the Learning Function, which
is a property of the NN as a whole, not of a single PE.
The purpose of the learning function is to modify the variable connection weights on the
inputs of each processing element according to some algorithm. This process of changing
the weights of the input connections to achieve some desired result can also be called the
adaptation function, as well as the learning mode. There are two types of learming;
supervised and unsupervised. Supervised learning requires a teacher. The teacher may be a
training set of data or an observer who grades the performance of the network results.

Either way, having a teacher is learning by reinforcement. When there is no external teacher,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

22

the system must organize itself by some internal criteria designed into the network. This is
unsupervised learning (learning by doing).

Part of the learning process is the error backpropagation. In most artificial neural networks
the difference between the current output and the desired output is calculated. This raw
error is then transformed by the learning process to match a particular network architecture.
The most basic architectures use this error directly, but some square the error while
retaining its sign, some cube the error, other paradigms modify the raw error to fit their
specific purposes. The PE's error is then typically propagated into the learning function of
another PE in the previous layer.

This back-propagated value can be either the current error, the current error scaled in some
manner {often by the derivative of the transfer function), or some other desired output
depending on the network type. Normally, this back-propagated value, after being scaled by
the learning function, is multiplied against each of the incoming connection weights to
modify them before the next learning cycle, in order to produce an output closer to the one

desired each time.

2.3 Error Backpropagation and Gradient Descent in Supervised Learning:

The most widely used learning algorithm with supervised learning, is the Error
Backpropagation algorithm (BP) (Rumelhart ef a/, 1986). It appeared as a solution to multi-
layered networks’s learning after Minsky and Papert have proven the inefficiency of single-
layered networks to solve the XOR problem, in their famous book Perceptrons (Minsky et

al, 1969).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

23

A unit (PE), call it J, in a backpropagation (BP) network computes its activation §; (in

equation (2)) with respect to its incoming excitation, which is, the net input net, (in equation

(D).

net;= L S;w; 0 (D
Jepred(i)

where pred(i) denotes the predecessors of unit i, wy denotes the connection weight from
unit j to unit, 5 is the output of the predecessor unit, and @, is the unit’s bias value. For the
sake of a homogenous representation, &, is usually substituted by a weight to a “bias unit”,
which is treated as any other neuron but with a constant output of 1 (Riedmiller, 1994 a).

BP requires a slightly different activation function from the perceptron. The neuron
produces a real value between 0 and 1 as output (Rich ef al, 1991), which is computed by
passing the net input through a non-linear activation function, usually the sigmoid logistic

(S-shaped) function as in equation (2).

s, = f(net,)= ——— (2)
l ! - nel
l1+e g

Notice that if the sum is 0, the output is 0.5 (in contrast to the perceptron, where it must be
either 0 or 1). As the sum gets larger the output approaches 1. As the sum gets smaller, on
the other hand, the output approaches 0.

A nice property of this function is being continuous and having an easily computable

derivative, shown in equation {3).

&
e, = (€)= 51 (= 51) (3)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

24

Like a perceptron, a BP network typically starts out with a random set of weights. The
network adjusts its weights each time it sees an input-output pair. Each pair requires two
stages: a forward pass and a backward pass. The forward pass involves presenting a sample
input to the network and letting activations flow until they reach the output layer. During the
backward pass, the network’s actual output (from the forward pass) is compared with the
target (desired) output and error estimates are computed for the output units. The weights
connected to the output units can be adjusted in order to reduce those errors. Then the error
estimates of the output units can be used to derive error estimates for the units in the hidden
layers. Finally, errors are propagated back to the connections stemming from the input units
(Rich ef al, 1991). This process is repeated until the network “learns” to give the desired
output. This is supervised learning.

In technical terms, consider the pattern set P (a pattern set is a set of pattern pairs,
containing input vectors given to the network for learning and desired output vectors,
respectively). Each pattern pair p of the pattern set cor;sists of an input activation vector x°
and its target activation vector #. After training the weights, when an input activation x” is
presented, the resulting output vector s” of the net should equal the target vector £ (or has a
small error margin €, as desired). The distance between the target and actual output vector,
in other words the fitness of the weights, is measured by the energy or cost function £

(Riedmiller, 1994 a)(Reynolds ef al, 1995) as in equation {4).
1
" P P2 .
prP :E%:(fk _"’f() Vk.k=l,"‘,n (4)

Where n is the number of units in the output layer. Fulfilling the learning goal now is

equivalent to finding a global minimum of £. For this, the weights in the network are

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

25

changed step by step by adding or subtracting a difference 4w() to each and everyone, and
thus are changed along a search direction d{#) (Figure 2.4), driving the weightsin the

direction of the estimated minimum:

J{W} sum of errors

Wy -— .
‘solution space

Figure 2.4: Adjusting the weights by Gradient Descent, minimizing /(%) (Rich ez af, 1991).

Aw(t) = n*d(1)
w(t +1) = w(t)+ Aw(t)

Where the learning parameter 77 scales the size of the weight-step, called the Learning Rate.

To determine the search direction df?}, first order derivative information, the gradient

VE = % 15 commonly used (Riedmiller, 1994 a). The gradient is a vector that tells us the

direction to move in the weight space in order to reduce the error (Figure 2.4). To find a
solution space (a solution weight vector), we simply change the weights in the direction of
the gradient {this technique is known as “gradient descent” (Rich et a/, 1991}).
Backpropagation performs successive computations of VE by propagating the error back

from the output layer towards the input layer.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

26

The basic idea. used to compute the partial derivative ——- (%4 for each weight in the network,
i

is to repeatedly apply the chain rule in equation (5).

r &S 5)
dl’!'j d' d!
where
d‘f & éhet
o, é” . =f'(net;)s (6)

&
To compute = the influence of the output s; of the unit / on the global error £, the
i

following two cases are distinguished:

e Ifiis an output unit, then

& 1,5
32 A W ?

! f

derived from equation (4)

17
o If i is not an output unit (a hidden unit), then the computation of gisalittle
i

more complicated. Again, the chain rule is applied:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

& o A

& ket By By

- E d}q &". (31(3!#

ke.\'uc'c(l']@"k dﬂ:’fk 6%‘,- (8)
oF

- E ey

kesucc(iy £

Where succ(i) denotes the set of all units % in successive layers (successive means closer to

the output layer) to which unit 7 has a non-zero weighted connection wy;.

Equation (8) assumes knowledge of the values — for the units in successive layers to
Ay

which unit i is connected. This can be provided by starting the computation (7) at the output
layer and then successively computing the derivatives for units in preceding layers, applying
(8). This way, the gradient information is successively moved from the output layer back

towards the input layer. Hence the name ‘backpropagation algorithm’ (Riedmiller, 1994 a).

2.3.1 BP Algorithm:

From the above computation, one can write a pseudo-code representation of the BP

algonthm. Assume the following:

We have a neural net with three layers:

n, input layer with A PEs,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

23

A, hidden layer with B PEs,

and o, output layer with C PEs.

A function, random(a,b), generates floating point random numbers between a and b.

The NN described in this algorithm (Figure 2.6), has two weight layers:
wl, between n and A,

and w2, between » and o.

This algorithm is also tuned to increase the learning speed. The speed of learning in BP is
increased by modifying the weight update steps, and adding a Momentum term o (Rich ef

al, 1991), as in Figure 2.6

2.3.2 Problems and Pitfalls of BackPropagation (BP):

A BP network may slide down the error surface into a set of weights that does not
solve the problem it is being trained on. If that set of weights is at a local minimum, the
network will never reach the optimal set of weights. This requires re-running the algorithm
with new random initial weights and might require also playing around with the learning
rate. Although BP is simple, it is often a difficult task and requires a lot of experimenting to
choose a good learning rate. A good choice depends on the shape of the error function,
which obviously changes with the learning task itself. A small {earning rate will result in long

convergence time on a flat error function, whereas a large learning rate will possibly lead to

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

29

oscillations, preventing the error to fall below a certain value, and be stuck in alocal
minimum. Although the algorithm can be guaranteed for convergence to a local minimum
under certain circumstances, there is no guarantee that it finds a global mimimum of the error
function.

Another problem of gradient descent is the influence of the partial derivative on the size of
the weight step. If the error function is shallow, the derivative is quite small, resulting in a
small weight step. On other hand, large derivatives lead to large weight steps, possibly
taking the algorithm to a completely different region of the weight space (see Figure 2.5),

especially when the error function has steep ravines (Riedmiller, 1994 a).

E(w)

w

Figure 2.5: Problem of gradient descent: The weight-step is dependent on both the learning parameter and the size of

the partial derivative _ZE_ (Riedmiller, 1994 a)

M

One of the solutions was the idea of a momentum term presented in section 2.3 1 in the BP
algorithm, It was introduced earlier in the literature to make learning more stable. This
parameter o scales the influence of the previous weight step on the current one. Usually,
when using gradient descent with momentum, the learning rate should be decreased to avoid

unstable learning (Riedmiller, 1994 a).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

30

wli

j = random(=01,00) Vi, jii=0,1 A j=1B
Awlj (1) = random(01,01) Vi, j.i=0--,A4 ,j=1---B a 1=0
w2jj = random(-01,01) Vi, j:i=0,. B j=1--,C
Aw2j (1) = random(-01,00) Vi, ji=0,- B ,j=1---,C at =0

xg = '-“} These are the thresholding (bias) (section 2.3) units, they have fixed output, 1.
hO =10

1=0.35 Optimal value for the learning rate (Rich et o/, 1991).
a=0.9 Optimal value for the momentum (Rich ef o/, 1991).

Suppose the training vector contains training pairs {X; ¥ where x; is the input vector and v, is the target output
vector.

Repeat
Repeat
Choose training pair (x;, ¥;)
1 . .
;. - - SR T where wlo; is the weight for x,
Vi hy = 7 ,j=1-.B 0 gh
- Wwi.. X,
I4+e¢ =0 V'
1] . .
v 0; = = ,J =1,---,C where w2q; is the weight for hy
-3 wl. . h
T+e =0 YV

{compute the error at units in the output layer)
v 52}' =0(l-0;)y;-0j) JJ=1--.C
{compute error at units in the hidden layer}
Vj: 6l =h}.(1—hj)f%lr52f,w2ﬁ ,j=1-.B
{now adjust weights}
Vi, i Bw(t+)= r}.52j.hi. +aAw2U(f) g=0,-- 8 j=1---C

WZ'?. = w?.y, +ﬁw2,j(f +1
Vi, ji Awl(t+1)= r}.é']j.x}, +aAwlg(!) A=0, A4 j=1 B

wl..=wl +Awl (f+1)
iy i Y
increment ¢
Unti] all training pairs have been presented
Untit Y& (i —9;)2 € where ¢ is a small error margin

Figure 2.6: A neural network learning algorithm using error backpropagation.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

n

2.4 Resilient Backpropagation:

To solve the problems of BP many algorithms were devised which are, in fact,

variants of BP, like the Delta-Bar-Delta algorithm (Jacobs, 1988). Quickprop (Fahlman,
1988). Later, we used a very efficient and faster algorithm than BP, it is called “Resilient
backpropagation” or Rprop, devised by Martin Riedmiller (Riedmuller es a/,1993). It also
passed through many variations by the author himself, the latest (to our knowledge) being in
(Riedmilier, 1994 b).
Rprop is a local adaptive learning scheme (local adaptation strategies are based on weight-
specific information, only, as the temporal behavior of the partial derivative of this weight.
The local approach is more closely related to the neural network concept of distributed
processing in which computations can be made in parallel) performing supervised batch
learning (or learning by epoch). Though Rprop is also based on gradient descent, its basic
principle is to eliminate the harmful influence of the size of the partial derivative on the
weight step, only the sign of the derivative is considered to indicate the direction of the
weight update. The algorithm is still that of gradient descent, same as BP, but the weight
update procedure is different; it depends on the derivative sign instead of its value.

The size of the weight change is exclusively determined by a weight-specific, so-called

“update-value” &(,-j,-) ;

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

~ (N
[__ A{{] f Ok ¢
i * ! o
Vi
. GEW
Aw}f” =<+ A(,;) , i =
éh*,}.
0 , else

9)

"
Where <X denotes the summed gradient information over all patterns of the pattern set

i

(Batch learning, or learning by epoch). This also means that the weight update and

adaptation are performed after the gradient information of the whole pattern set is

computed. By replacing the A(,»;) by a constant update-value A, equation (9) yields the so-

called ‘Manhattan’-update rule.

The second step is to determine the new update-values A(j;-). This is based on a sign-

dependent adaptation process.

- B AN
,7+ * A(.f; 1 , {f ¥ > 0
o'w,j a'lv,j
(-1 ()
A) AUD . OB, & 0
g 7 if s {f <
élv,j c’iw,j
-1
A(,J. } , else

where 0<n” <1<z’

(10)

In words, the adaptation rule works as follows: every time the partial denivative of the

corresponding weight w, changes sign, which indicates that the last update was too big and

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

i

the algorithm has jumped over a local minimum, the update-value A(,;-) is decreased by the

factor 77~ . If the derivative retains its sign, the update-value is slightly increased in order to

accelerate convergence in shallow regions. Additionally, in case of a change in sign, there

should be no adaptation in the succeeding learning step (Riedmiller, 1994 b). In practice, this

. . (=N .)
can be achieved by setting & — o inthe above adaptation rule.
A
ij

In order to reduce the number of freely adjustable parameters, often leading to a tedious
search in parameter space, the increase and decrease factors are set to fixed values. The
choice of the decrease factor 7~ was lead by the following considerations: if a jump over a
minimum occurred, the previous update-value was too large. For it cannot be derived from
gradient information how much the minimum was missed, the correct value had to be
estimated. On average it would be a good guess to halve the update-value (maximum
likelihood estimator), so it was chosen as 77~ = 0.5. The increase factor 7™ on the one hand,
has to be large enough to allow fast growth of the update-value in shallow regions of the
error function, but on the other hand the learning process can be considerably disturbed if a
too large increase factor leads to persistent changes of the direction of the weight step. In
several experiments, it was found that the choice of 7"=1.2 gives very good results,
independent of the examined problem. Slight variations of this value did neither improve nor
deteriorate convergence time. So, in order to get parameter choice more simple, it was
decided to constantly fix the increase parameter to n* = 1.2.

All this allows Rprop to try to adapt its leamning process to the topology of the error

function (Riedmiller, 1994 b) (Riedmiller, 1994 a).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

34

2.4.1 Rprop Algorithm:

The following pseudocode in Figure 2.7 describes how Rprop updates the weights.
The rest of the algorithm is the same as BP in Figure 2.5 {you can simply insert this code
instead of the code in the weight adjustment part of Figure 2.5). The code put here is only

for one weight layer, but it applies on any other weight layer, only the computation of the

Gradient Ef_m changes according to equations (5), (7) and (8) in section 2.3.
d‘.

The minimum (maximum) operator delivers the minimum {maximum) of two numbers; the
sign operator returns +1, if the argument is positive, -1, if the argument is negative, and 0

otherwise (Riedmiller, 1994 b).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

35

Vi (=4,
K

Y

Vi J (r-H=0

{Please read about these initial vatues in section 2.4 Values for Ay, can be sct by the Random function
described in section 2.3, 1}

Repeat
Compute Gradient & (N
o

For all weights and biases {
].f (i(r —_ 1)- (':E'
M i

8;7(e) = min imum(Aj; (1 ~1)* 0" A gy)

“)> 0) then {

E
Aw i (1) = —sign(~—— (1)) * Ay (¢
wir () ﬂgn("’"ij() i
w‘.j(r+1)= wy.(t)+ Aw'}.(t)
E &
—{-D=—1)
c"hg c"wg.
}
else if (i(; - 1)t£(;) <) then {
i Y
Ag(f):maximtw(Ag(!—1)*!;_‘Amin)

i(r-l):va
Hiy
}
else |I'(13 * =0)then{
o (=1 av,.m 0)
if if

R
A"}'j(’) = —5‘1gn(?ﬂ(f))* AU.(I)

wi,(! +1)= w{.,(t)+ AwU.(r)

% &
— U =-N=——(1)
My Mij

et

!
Until (converged)

Figure 2.7: Weight update in Resilient backpropagation algorithm.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

36

Chapter 3

Literature Review

Researchers have been trying to build many computational models to mimic
different processes in the human brain, ever since computers appeared and even before
that (Figure 1.2). One might say, we are on the quest trying to build the artificial eye or
the artificial ear, in an overall mode! of the artificial brain. Two distinct fields have been
identified:

» Speech Recognition, in which the computer is used to recognize speech and convert it
mto text.
e Text Synthesis, in which written text is synthesized by a computer into speech or

phonological representation.

3.1 Research in Speech Recognition and Text Synthesis:

We will talk first about old attempts in speech recognition and text synthesis,

then we will talk about using ANNs for speech recognition and then for text synthesis.

As one reads through the literature, one will find different attempts, some are from a
computational point of view, and others from a linguistic point of view. It was in the late
eighties when the two started working together in this interdisciplinary field. During
those years, case analysis was made from the cases provided by the two points of view,

then solutions started to appear (Barry, 1985).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

37

There has been little interaction between speech recognition and linguistic phonology in
the early eighties, due to the different aims of the two fields. Hoequist (Hoequist. 1987)
from the Linguistics Department at the University of Cambridge, calls for interaction
between the two fields as he proposes that information about phonological processes can
be of use in Automatic Speech Recognition (ASR). He compared two phonological rule
components in a system having limited dialect normalization, one illustrating context-free
rules and one making use of context sensitivity. In either components, the system utilizes
the interaction between speech recognition and linguistic phonology, in the sense that
speech is recognized into phonological strings, which are then used by text synthesizers
to generate text from these phonemes. It is argued that a context-free set of phonological
rules is inadequate to deal with phonological processes in natural languages (Hoequist,
1987).

In his paper, Hoequist, also claims that techniques used for isolated-word recognition
suffer badly degraded performance when confronted with continuous speech (Hoequist,
1987). He also describes a context-free phonological parser presented by Church
(Church, 1983). This context-free system, does not ignore context, but encodes it in such
a way that a context-sensitive formalism is claimed to be unnecessary. Hoequist analizes
Church’s system and points out its difficulties and describes a case in which the system
failed to parse. Then he presents an example on context-sensitive parsing. It is the “two-
level’ parser proposed first by Koskenniemi in 1983 and then developed for phonological
rule implementation at Cambridge (Ritchie e al, 1986). The core of two-level parsing 1s
its encoding of rules into nondeterministic, finite-state automata, which simulates context
sensitive rules. Since context sensitive rules are formally more powerful than finite-state
machines, it would be possible to write rules to generate strings not correctly analysable

by any finite-state device (Hoequist, 1987). However, phonological and phonetic

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

K3

processes in a natural language do not ever seem to produce such outputs. These
automata can be envisioned as moving simuitaneously along two ‘tapes’ (hence the
name ‘two-level’), one representing the input and one representing a graph through a
lexicon having a tree structure. The rules check whether the current input character can
be matched to the current lexical character. If all the rules allow the current pairing, the
next character is taken from the input and checked for any allowable matches in the
lexicon, and the process is repeated. This continues until the end of the mput is reached
{(a successful parse) or no pairing of lexical and input characters is possible at some point
(Hoequist, 1987).

While a rule component allowing context sensitivity is superior in this respect, it cannot
be said to be optimal. The rules’ formal power enables them to undo the effects of
processes which defeat context-free rules and also overgenerates mappings between the
input and the lexicon. The obvious next step is to find ways to prune these mappings.
Two methods are already in use. One is that of automatically checking the lexicon to see
whether it contains the segment sequences the rules produce, the other is the reliance on
an early identification of the speaker’s dialect to determine which rules will be applied to

an input string (Hoequist, 1987).

Although Hoequist did not mention any expert or rule-based systems, one might notice
that what he described can be implemented as an Expert System (ES).

In Morocco, researchers did not ignore the fact that an ES can be constructed for Arabic
language. Actually Rajouani and his colleagues (Rajouani ef af, 1987), were able to do
text-to-speech synthesis-by-rule of Arabic language to some point of accuracy, The input

to the system could be any typed Arabic text. The orthographic phonetic translation is

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

39

designed as a set of arborescent (i.e. tree-like) tests relative to the right and left contexts
of an analysis window that shdes along the sentence.

The system that Rajouani and his colleagues devised, works in two steps, the first step
consisted of analysis of Arabic speech using linear prediction techniques. The second
step was the development of a text-to-speech conversion system based on the
concatenation of diphones. The system allows the transformation of any orthographic
text entered through a terminal to a corresponding vocal string. It also utilizes a
component (a linguistic processor) that first starts by transcribing the letters, symbols and
punctuation of the text into a sequence of phonemes and stress markers.

(Rajouani et al, 1987) describes the synthesis strategy as follow: The parametrization of
the Arabic sounds has been done by a trial and error procedure. Each phoneme-segment
is stored such as a unique characterization including phonetic information, inherent
values of temporal parameters and synthesizer control parameters. The stops are stored
as the segment corresponding to the burst. For the consonants sounds, the targets of the
first three formants are computed by suitable linear equations depending on the
rounded/unrounded feature of the following vowel. A set of complicated rules computes
the control parameters to be sent to the synthesizer every 10ms. Formant target values
for two consecutive segments are connected by means of Y; cosinus interpolation taking
into account the transition durations. Amplitudes of the excitation sources and formant
resonators ones are computed by adequate transition rules which are function of the
phonetic classes of the two consecutive segments and the position of the segment on the
sequence (initial, medial, final, intervocal) (Rajouani ef af, 1987). Three states of
problems are defined by Rajouani’s system, (1) the letter-to-phoneme translation, (2) the

linguistic processing rules and (3) the parametrization of the Arabic sounds according to

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

40

the used synthesizer. We will come back to these problems and discuss them in Chapter
5, as they are part of the problems we faced in our system.

The generation of the rules in Rajouani’s system, is based on an intensive manual
investigation and compilation of a wide corpus of natural speech, made by him and his
colleagues. The evaluation and validation of the rules is done by a hard “tnal and error”
procedure. The best justification for the rules is that they produce acceptable synthetic

speech (Rajouani et al, 1987).

As Rajouani and his colleagues in Morocco tried to use rule-based synthesizers, others
noticed the emergent use of ANNs in pattern recognition, and started studying the
possibility of such a neural synthesizer using English language.

One of the early attempts was that of (Watrous ef al, 1987), who used a feedforward
NN with recurrent links and BP learning to develop an English speech recognition NN.
In the paper referenced here, Watrous described simple experiments to discriminate the
consonants [b,d,g] in the context of [i,a,u] using CV (Consonant-Vowel) wofds, The
results show that connectionist networks can be designed and trained to successfully
discriminate similar word pairs by learning context-dependent acdustic—phonetic features.
The speech data used for these experiments consisted of isolated CV utterances for a
single speaker, consisting of the stop consonants [b,d,g] in combination with the vowels
[i,a,u). Five repetitions of each CV word for a total of 45 utterances were spoken into a
commercial speech recognition device (Siemens CSE 1200), where it was passed
through a 16-channel fiiter bank, full-wave rectified, log compressed and sampled every
2.5 millisecond. The data files were segmented by hand to extract the transition portion
of the CV word. The segmentation was done to decrease the computational load on the

optimization algorithm, which is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

41

algorithm (Fletcher, 1980), What this algorithm does, is that it combines a linear search
along a minimizing vector with an approximation of the second derivative of the object
function. In this way, knowledge about the structure of the error surface is used to select
optimal search directions and achieve much more rapid convergence, especially in the
neighbourhood of the function minima (see Figure 2.4)(Watrous et al, 1987). The
transfer function at the output units is the Gaussian function, with a variable center point
and sharpness parameter.

A randomly initialized network with 16 hidden units was optimized for consonant
discrimination. The squared error decreased from 2934 to 121 after approximately 500
iterations. A similarly initialized network, with 10 hidden units, was optimized for vowel
discrimination, The squared error decreased from 2995 to 38.2 after approximately 140
iterations.

The analysis of the hidden unit activation in response to the training data showed little or
no corntext dependence. The features responded similarly to the appropriate vowel across
consonant contexts (Watrous ef al, 1987). In conclusion, it has been shown that a NN
with a temporal data flow architecture with recurrent links, can infer directly from real

speech data a mechanism for acoustic-phonetic discrimination.

As more research progresses, some researchers combine the movements of the speaker’s
mouth and facial expressions (i.e. visual data), with speech recognition; to correctly
identify vowels (Yuhas ef a/, 1992). Yuhas defines the unit of visual data as the viseme.

Other research, includes Kohonen’s Neural Phonetic Typewriter (Kohonen, 1988), which
transcribes dictation (speech recognition) using an unlimited vocabulary, and Hinton’s

NN for isolated word recognition from an input speech (Hinton ef al, 1990).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

12

The typical model for a text-synthesis neural network is the work of Rosenberg and
Sejnowski, which they call NETtalk (Sejnowski e al. 1987). NETtalk is considered by
the literature as the benchmark and the standard for every research in text-to-speech by

neural networks.

3.2 A Neural Network that Learns to Pronounce English Text: NETtalk:

The idea of our work was inspin;éd by Sejnowski and Rosenberg (Sejnowski et al,
1987). They constructed a neural network called NETtalk that learns to convert English
text to speech. It demonstrates that a relatively small network can capture most of the
significant regularities in English pronunciation as well as absorb many of the
irregularities, by converting strings of letters to strings of phonemes™ (Sejnowski es al,

1992).

3.2.1 NETtalk’s Topology:

NETtalk is a feedforward neural network with two layers of weights (i.e. Three
layers of PEs). There are seven groups of units in the input layer, each group encodes
one letter of the input at any one time as shown in Figure 3.1. The desired output of the
network is the correct phoneme, associated with the center, or fourth, letter of this seven
letter “window”. The other six letters (three on either side of the centre letter) provide a
partial context. The text is stepped through the window letter-by-letter. At each step, the
network computes a phoneme, and after each word the weights are adjusted according to
how closely the computed pronunciation matched the correct one (Sejnowski ef al,

1992).

™ A phoneme is the basic unit of specch, while a grapheme is the basic unit of writing, the letter in an alphaber.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

43

The activation function used here is the sigmoidal activation function (in Figure 2.2 and
described by equations (1) and (2) in section 2.3), it is zero if the input is very negative,
then increases monotonically, approaching the value one for large positive inputs.

This form regularly approximates the firing rate of a neuron as a function of its integrated
input, if the input is below threshold there is no output; the firing rate increases with
input, and saturates at a maximum firing rate. The behaviour of the network does not

depend critically on the details of the sigmoid function (Sejnowski et al, 1992).

Teacher
-~

x/
Output Units 000000

/TN
Hidden Units

7 AN

Input Units 0000 00CO Q00O 0000 QOCO OCCO OOC0

{ - a - c a t -)
Figure 3.1: Schematic drawing of the NETtalk network architecture. A
window of Jetters in an English text is fed to an array of 203 input units,
Information from these units is transformed by an intermediale layer of 80
hidden units to produce patterns of activity in 26 output units {Sejnowski ef

af, 1992).

3.2.2 Representation in NETtalk:

The letters of English text are represented locally within each input group by 29
dedicated units, one for each letter of the English alphabet, pius an additional three units
to encode punctuation and word boundaries. Only one unit in eacmgyt group is active

for a given input (Sejnowski et al, 1992).

¥

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

- i

44

Given the number of letters (graphemes) in the English alphabet, which is 26, we can
compute the number of PEs at the input layer as (26+3) X 7 = 203. The phonemes, in
contrast, are represented in terms of 21 articulatory features, such as point of
articulation, voicing, vowel height, and so on. Five additional units encoded stress and
syllable boundaries, making a total of 26 output units in the output laye (for a listing of
these articulation features and phonemes used in NETtalk, please refer to (Sejnowski ef
al, 1992)).

The goal of the learning algorithm is to search effectively the space of all possible
weights, for a network that performs the mapping of graphemes at the input layer to
phonemes at the output layer.

Representation at the output layer is considered distributed representation, since each
output unit participates in the encoding of several phonemes (Sejnowski et al,
1992)(Rich et al,1991). The hidden layer has 80 hidden PEs. This results in data
compression, because hidden PEs are used by the network to form internal
representations that are appropriate for solving the mapping problem of letters to
phonemes. Later after analysis of the hidden layer, it was found that this data
compression is possible due to the redundancy in English pronunciation. Also, it was
found that, on the average, about 20% of the hidden units were highly activated for any
given input, and most of the remaining hidden units had little or no activation. Thus, the
coding scheme could be described neither as a local representation, which would have
activated only a few units, or a “holographic” representation, in which all of the hidden
units would have participated to some extent. It was apparent, even without using
statistical techniques, that many hidden units were highly activated only for certain
letters, or sounds, or letter-to-sound correspondences. A few of the hidden units could

be assigned unequivocal characterization, such as one unit that responded only to

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

45

vowels, but most of the units participated in more than one regularity (Sejnowski ef af,

1992).

3.2.3 Learning in NETtalk:

NETtalk uses a variation of supervised BP learning. The text is stepped through
the window letter-by-letter. At each step, the network computes a phoneme, and after
each word the weights are adjusted according to how closely the computed
pronunciation matched the cormrect one. The error signal is back-propagated only when
the error margin is greater than 0.1 (Sejnowski ef al, 1992).

In addition to weights between layers that connect the PEs, each PE also has a threshold
which can vary. To make notation uniform, the threshold was implemented as an
ordinary weight from a special PE, that always had an output value of 1. This fixed bias
acts like a threshold whose value is the negative of the weight.

A.;. the overall goal of the learning algorithm is to search effectively the space of all
possible weights, for a network that performs the mapping. Technically, the goal of the
learning procedure is to minimize the average squared error between the values of the

output units s/~ and the correct pattern, s;”, provided by a teacher:

f
Error = ¥(s; —s™)? (1)

i=1

where J is the number of units in the output layer N. This is accomplished by first

computing the error gradient on the output layer:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

+6

5 = (s = s (nett™) (12)
and then propagating it backwards through the network, layer by layer:

5(") _ Z§(H+l) (n)f (net(")) (13)
J

where f’(net;) is the first derivative of the function f(net,) (refer to equations (2)
and (3) in section 2.3), and n is any layer (N being the output layer).

These gradients (also found in the BP algorithm in Figure 2.6), are the directions that
each weight should be altered to reduce the error for a particular item. To reduce the
average error for all the input patterns, these gradients must be averaged over all the
training patterns before updating the weights, this is batch learning by epoch. Another
method, that was actually used by (Sejnowski ef al, 1992), is to compute a running

average of the gradient with an exponentially decaying filter:
Awy (1) = adw (u=1)+ (1 -)5 s (14)

Where o is the momentum (typically 0.9), » is the number of input patterns already

presented up to the point this equation is to be calculated (you can consider it as a

parameter of time), so Aw;)(u -~ 1) 1s the change the weight experienced during the

previous forward-backward pass, and # is the number of layers (N being the output

(n)

layer). The smoothed weight gradients dwj; " (u) can then be used to update the weights:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

47

w,f,-")(r+l)=w;.”)(r)+ r;Aw}j")(u) (15)
where 7 is the number of weight updates (also a parameter of time) and 7 is the learning
rate. This ensured that the network did not overlearn on inputs that it was already getting
correct (Sejnowski et al, 1992).

As for the training set, two texts were used to train the network : phonetic transcriptions
from a corpus of informal continuous speech, and 1000 most commonly used English
words from the 20,012 words in the Miriam Webster’s Pocket Dictionary.

Two procedures were used to move the text through the window of 7 input groups. For
the corpus of informal continuous speech the text was moved through in order of word
boundary between the words. Several words or word fragments could be within the
window at the same time. For the dictionary, the words were placed in random order and
were moved through the window individually.

Each weight in the network was adjusted after every word to minimize its contribution to
the total mean squared error between the desired and actual outputs (Sejnowski et af,

1992).

3.2.4 NETtalk Performance:

A simulator was written in the C programming language for configuring a
network with arbitrary connectivity (NETtalk), training it on a corpus and collecting
statistics on its performance. A network of 10,000 weights had a throughput during

learning of about 2 letters/sec on a VAX 11/780 FPA (Sejnowski et af, 1992).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

48

On the performance of NETtalk on the continuous informal text, (Sejnowski ef al,
1992) is quoted saying: “This was a particularly difficult training corpus because the
same word was gften pronounced several different ways. ™

The percentage of correct phonemes rose rapidly at first and continued to rise at slower
rate throughout the learning. When learing was first started, NETtalk sounded like an
incomprehensible babbling sound, like a baby when it first learns to talk. Then, word
boundaries were recognised and the sound started making sense, until after about 50
passes when words began to clear up.

When the network made an error it often substituted phonemes that sounded similar to
each other. For example, a common confusion was between the “th” sounds in “thesis”
and “these” which differ only in voicing. Also, few errors in a well-trained network were
confusions between vowels and consonants.

As a test of whether the network memorizes the training words or just captures the
regular features of pronunciation (test of generalization), a network was trained on the
1024 word corpus of informal speech was tested without training on a 439 words
continuation from the same speaker. The performance indicated 78% correctness,
which means that much of the learning was transferred to novel words even after a small
sample of English words was learned.

Is the network resistant to damage? After making random changes of varying size to the
weights, the performance was examined: random perturbations of the weights uniformly
distributed on the interval [-0.5, 0.5] had little effect on the performance of the netwo'rk,
and degradation was gradual with increasing damage. This damage caused the magnitude
of each weight to change on average by 0.25; this is the roundoff error that can be
tolerated before the performance of the network begins to deteriorate and it can be used

to estimate the accuracy with which each weight must be specified. It was also noticed

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

49

that, if the damage is not too severe, relearning was much faster than the onginal
learning starting from the same level of performance.

As for the Miriam Webster’s Pocket Dictionary training. The 1000 most commonly
occurring English words that were selected are also amongst the most irregular, so it was
also a test of the capacity of the network to absorb exceptions.

The ability to generalize was tested on a large dictionary. Using words from a network
with hidden units trained on the 1000 words, the average performance of the network on
the dictionary of 20,012 words was 77%.

About how generalization is made in NETtalk, (Sejnowski ef a/, 1992) mentions that all
performance figures refer to the percentage of correct output phonemes chosen by the
network in the ocutput string after a generalization test.

The performance was also assayed by “playing” the output string of phonemes and
stresses through DECtalk, bypassing the parts of the machine that converts letters to
phonemes (Sejnowski ef al, 1992).

In other experiments, the number of input groups was varied from three to eleven. Both
the speed of learning and the asymptotic level of performance improved with the size of
the window. The performance with 11 input groups and 80 hidden units was about 7%

higher than a network with 7 input groups and 80 hidden units (Sejnowski et af, 1992).

3.2.5 Conclusions about NETtalk:

Despite the similarities between NETtalk and human learning, NETtalk is too
simple to serve as a good model for the acquisition of reading skills in humans. The
network attempts to accomplish in one stage what occurs in two stages of human
development. Children learn to talk first, and only after representations for words and

their meanings are well developed, do they learn to read (Sejnowski et al, 1992).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

50

NETtalk can be used to study the importance of particular phonological rules in the
context of a particular corpus by presenting the network with nonsense words that are
constructed to critically test a proposed rule. The performance of the network can also
be studied following damage to the network by either removing units or by disrupting
weights which can be compared with reading errors observed in humans suffering from
acquired Dyslexia. NETtalk is clearly limited to handle ambiguities that require

syntactic and semantic levels of analysis (Sejnowski er a/, 1987).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

51

Chapter 4
A NETtalk-like Neural Network to

Pronounce Arabic Text

In this chapter we will present an Arabic text synthesis model that we constructed,

and the experiments we carried out on it.

4.1 Duplicating NETtalk:

Since NETtalk is considered a benchmark for any neural-based text synthesis
research, we constructed a NETtalk-like ANN in an attempt to duplicate it; we call our
neural net, NETtalk2. Many experiments to pronounce Arabic text were made on NETtalk2.
Here we will present the structure of NETtalk2, then we will discuss the experiments we ran
on Arabic and English text. In the last section of this chapter we will present the results and
then discuss the performance of NETtalk2, Investigation and analysis of results will follow

in Chapter 5.

4.2 The Topology of NETtalk2:

The architecture of NETtalk2 is mostly the same as NETtalk (in Figure 3.1) because

it mimics it. There are two weight layers, i.e, three layers of Processing Elements (PEs).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

The Input layer consists of seven input groups in the form of a shding window, each input
group contains 33 PEs, corresponding to 28 letters in the Arabic alphabet plus word

boundaries, Full-stop, question mark, exclamation mark and gemination mark”', so we have

33 X 7=231PEs at the input layer . The hidden layer consists of 80 PEs, like NETtalk, and
at the output layer there are 8 PEs, that encode more than 240 phonemes. The set of
phonemes used by NETtalk2 was extended to handle phonemes that are capable of
representing Arabic and English text (see Appendix A).

The window of size seven letters in NETtalk was chosen for two reasons (Sejnowski ef al,
1992). First, A significant amount of information needed to correctly pronounce a letter is
contributed by nearby letters. Secondly, (Sejnowski et al, 1992) were limited by the
computational resources to exploring small networks. These same reasons also apply on our
research, The limited size of the window also meant that some important nonlocal
information about pronunciation and stress could not be properly taken into account by the
model. Later we will show how we experimented with larger window sizes.

The transfer function of a PE in NETtalk2 is the sigmoidal function,

1
$; = f(neti)= EE—

— net
I+e !

NETtalk2 also uses the same BP algorithm of NETtalk (equations: 11, 12,13, 14 and 15
from section 3.2.3 with the algorithm in Figure 2.6. See Appendix C for the code of the

algorithm in ANSI C programming language).

® Gemination mark is the “chadda” ().

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

AR

4.3 Representation of Input and Output in NETtalk2:

The input to NETtalk2, could be any text typed by a Standard 101/102-Key
English/Arabic Keyboard. The text could be Arabic or English. The user first types the
required text, stores it in a text file, then a certain program (a pre-processor), reads the text
file and encodes every character, including Space (which is considered as word-boundary)
into a 33-bit binary pattern (from 0 to 32). The gemination mark is also considered as one of
the input characters, in which case the pre-processor will simply duplicate the letter
(character) over which the gemination mark appears.

Output is represented by an 8-bit binary number that corresponds to the appropriate
phonological representation of the input. This is distributed representation, like in NETtalk,
in the sense that 8-bit binary numbers in the output file encode more than 240 phonemes,
because more than one of the 8 PEs at the output layer can take the value 1 at the same
time, generating a binary number between O and 255, used later to fetch the corresponding

phoneme and sound file.

4.4 How NETtalk2 works:

NETtalk2 (Figure 4.1) reads the binary input to the input layer as groups of 7 at each
time, a forward pass is made and output is generated as an 8-bit binary number stored in
another text file, and so on, until all the input binary file ends. Another program (a post-
processor) scans through the output text file (which by now includes all binary 8-bit
numbers that represent the output phoneme for every binary pattern read by NETtalk2) and
converts every number to a corresponding phoneme. To generate the sound, each output

number, 15 associated with

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

54

the binary numbers are then combined by the post-processor -as described in Appendix B-
mto one long sound file, which can then be played by any commercial software that reads

sound files of the .wav format.

98 FPhoneme Number

I Post-processor
11111 Outout

Neural Network
(see Figure 3.1)

T T T
---------- 0010000100010100001 ++:----+---ooov- - INPUL
T 11t 111

"""" g |Jd]? lof 11T 1 3. .. Pre.processor

. Dicrection of parsing

Figure 4.1: Diagram of NETtalk2 system.
4.5 Learning in NETtalk2:

Two learning algorithms were used in NETtalk2. First, the BP algorithm as
mentioned in sections 4.2 and 3.2.3 was used to mimic the training and learning of NETtalk,
then experiments were made using the Rprop learning algorithm (described in Chapter 2.
Code in Appendix C). Results of training using Rprop are in, most cases, better and faster
than BP as we will see later”.

NETtalk2 was first tested on English using two texts, (1) an informal continuous corpus of
text, and (2) the 1000 most commonly used English words (that were used by (Sejnowski et

al, 1992), see Appendix D).

¥ Benchmark experiments were atso ran using Rprop, and compared to be found very close to benchmark results
reported in (Riedmiller, 1994 &), Benchmarks include the XOR problem, 3-bit and 6-bit parity, 10-5-10 and §2-2-12
decoders and the two-spirals problem, for more information on 1hese benchmarks, please refer to (Kiedmiller, 1994 a).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

55

Also, the two cases were used to train NETtalk2 on Arabic, (1) a continuous corpus of text,
and (2) a set of 1024 commonly used Arabic words from everyday use.

During learning, the binary text generated by the pre-processor is stepped through the
sliding window, seven letters at a time. At each step, NETtalk2 computes a binary
representation of a phoneme corresponding to the middle letter in the window, after each
word the weights are adjusted according to how closely the computed pronunciation
matched the correct one in the training pair. The error signal is backpropagated only when
the error margin is greater than 0.1, using momentum value of & = 0.9. As described by
NETtalk learning in section 3.2.3.

Two procedures were used to move the text through the window of 7 input groups. For the
corpus of continuous text, the text was stepped-through in order of word boundaries,
signified by the space between words in the text. Several words or word fragments could be
within the window at the same time. Whereas, for the corpus of commonly used words, the
words were placed in random order and moved through the window individually, such that,

only one word or fragments of only one word could be within the window at the same time.

4.6 Training NETtalk2 on English Text:

To make sure that NETtalk2 can really simulate NETtalk, we ran some experiments
with NETtalk2 on English text. These include experiments that are similar to the ones made
by (Sejnowski ef al, 1992),

Some experiments were carned out by using a window of 7 input groups (this is the default
unless mentioned otherwise and from now on we will refer to it as size-7 window), other

experiments were conducted with windows of 3, 5 and 11 input groups.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

56

We will mention here some short but yet important examples from these experiments.

Duplicates of (Sejnowski ef af, 1992) experiments can be found in subsection 4.6.1

Example El: First we experimented with the English alphabet, we ran NETtalk2 on the
English alphabet in three cases, first case with the alphabet as a set of separate letters,
second case with the alphabets as a corpus of continuous letters using a size-7 window and
the third case is the same as the second but with size-3 window. See results in Table 4.1.
Percentage figures refer to the percentage of correct output phonemes. Those were

calculated by the following equation:

Number of correct output phonemes
Percentage of corrrect output phonemes = x 100%

Total number of output phonemes

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Table 4.1: Trining NETtalk? on the Euglish alphabet. Figures represent percentage of correet output phonemes in the

output string of phonemes.

57

Ny alphabets as a setof | one-line continuous one-line continuous
B R | separate letters, representation of the representation of the
B M! using size-7 window | alphabets, using size-7 | alphabets, using size-3
AR A window window
Number of Epochs™ 35 (Rprop) 15 (Rprop} 2000 (Rprop & BP)
until 0% error 105 (BP) 50 (BP)
convergence
recalling® test using:
m
X
u 100% 100% 20%
a
S
J
k
generalization test
using:
man 10% 54% 10%
and
dog
generalization test
using:
man and dog 2% 80% 30%

Example E2: In this experiment, the following set of 40 words {part of the 1000 most
commonly used English words) was stepped through NETtalk2 for learning as a

continuous text:

“ An epoch is a full pass (iteration) of the meural net over the training set before updating the weights, and is a
characteristic of batch learning.

> Recalling is the ability of a nevral network to remember whal it was trained on when it is presented with the testing
set {i.¢. using the training set for lesting after leamning).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

58

and or no not right wrong I am he she it is they we
are them their there you her him his when what where
how who clue glue whoever however never nor neither

either with between among come go

Learning took only 79 epochs using the Rprop algorithm, while it took about 200 epochs
using the BP learning algorithm, which was used by NETtalk. After NETtalk2 has learned
this corpus of words using BP, strings in Table 4.2 were passed through NETtalk2 as a test
of generalization. Table 4.2 also shows different results when different input window sizes

were used during training.

Table 4.2: Generalization test on NETtalk2 after training on 40 words. Notice that generalization power increases

with incrasing input groups and saturates at size 11.
Percentage of correct phonemes in the generated output using different
__Input Stringﬁl input window sizes
BRI size-S size-7 size:9 | size-11 | size-13 | size-15
who is he 80% 90% 92% 92.5% 92% 89%
weed 60% 83% 85% 85% 85.1% 80%
ever 73.4% 100% 100% 100% 100% 91%
nizar radi 68% 86% 89% 90% 90% 77%
not yet 62% T1% 77% 79% 77% 62%

Figures in Table 4.2 reveal that the ability of NETtalk2 to generalize on novel words, after
training, increases as the size of the input windew (used during learning) increases, but then
saturates at size 11, i.e. generalization performance is forzen at certain values or increases in

small fractions when sizes larger than 11 are used, but then starts decreasing after size 15.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

59

As we will see later, also increasing the input window size increases the leanring speed (by
decreasing the number of epochs needed to reach converegence), but of course each epoch
takes more time to fimish than with a smaller input window, due to the increased number of

PEs, connections and thus calculations made by NETtalk2.

Example E3: As another experiment on the effects of having an input window of a

different size than 7 letters, the following continuous corpus of 10 English words:

and or no not right wrong I am he

was stepped through NETtalk2 with an input window of size 5, in this case, NETtalk2
finished training in 28 epochs using Rprop as the learning algorithm, while it took around
100 epochs using BP. When the size of the input windo;v was changed to 11 input groups
(11 letters), training took only 24 epochs (Rprop) and 92 epochs {BP), but, when an input
window of size 3 (only one letter at each side of the letter to be pronounced) was used, the
learning algorithm did not converge (i.e., NETtalk2 could not learn using either of the
learning algorithms).

When the same text was used on the standard size-7 window, it finished traiming in 27
epochs using Rprop and in 97 using BP (Figure 4.1),

After NETtalk2 was trained on the above text, it was put on a test of generalization with the
strings in Table 4.3. Results in Table 4.3 show that generalization also improved with

increasing window size. As the window size was increased from the default of 7to 11,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

performance of NETtalk2 increased by 6%, as also reported on NETtalk (Sejnowski et al,

1992).

60

Table 4.3: Training NETtalk2 using BP with different sizes of the input window.

Input Text Correctness Correctness Correctness
percentage in percentage in percentage in
output phonemes | output phonemes | output
using size-5 using size-7 phonemes using
window window size-11 window

hero T1% 80% 86%

rite 76% 79% 83%

not and wrong 95% 100% 100%

I am not wrong |[96% 100% 100%

yes or no 70% 73% 77%

Number of —e— Rprop

Epochs —4—BP

100 l_'\.

90

80

70

60 1

50 -

40 4

30 - "

20 4 .

10 -

0 . . ; .

o slze-3 sizes size-7 size-11
Window Size

Figure 4.2: Number of leamning epochs (y-axis) decreases as the input window size
(x-axis) increases. When the window size is 3, number of epochs is infinite, as
described in example E3.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

61

Example E4: When NETtalk2 was trained on the following small corpus of continuous

text using size-11 window:

The Computer Science department at the University
of Jordan announces the starting of its Masters
program, from the point that the current number of

eligible students is adequate

it finished training in around 200 epochs using BP, as a test of generalization, strings in

Table 4.4 were passed through the net. Results of generalization are reported in the Table.

Table 4.4: Generalization results on a small English text.

Input string Correctness percentage in phonemic
output string
scientist 95%
announcement 90%
current students of the 039%,
university of jordan
enough number of students 75%
led to starting the program

programmer 97%

Example ES. Later on, we tried NETtalk2 on extracts from children stories due to the
simplicity in their text. Consider the following first lines from the children story “7he

Golden Goose™ .

®) “The Golden Goose” is by Betty Evans, copyrights for LADYBIRD BOOKS LTI MCMLXXX], Loughborough, UK.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

62

Once upon a time, there was a man who had a wife and
three sons.

They all lived in a cottage on the edge of a forest.
The youngest son was called Simpleton, and everyone
because he wasn’t as clever as his

laughed at him

brothers.

NETtalk2 needed 120 training epochs when Rprop was used to learn this text with the
default input window size, while it needed 200 epochs when BP was used. When a window
of size 11 was used, NETtalk2 needed only 70 epochs using Rprop and 107 using BP.

Generalization tests results are shown in Table 4.5,

Table 4,5: Generalization results of training NETtalk2 on a simple English story using different learning algorithms with

different window sizes,

Input test string

Percentage of correct output
phonemes using input
window of size 7

Percentage of correct output
phonemes using input
window of size 11

_;*_Eiie;:_ IR “‘j" e BP Rprop BpP Rprop
.everybody laughed at 86% 90% 92%, 97%
simpleton

he was dump 64% 70% 70% 73%
the man with his

wife and three sons 799, 87% 86% 96%
lived on the edge of

a forest

one day the oldest

son had te go into 539, 53% 57% 63%
the forest to cut

firewood

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

63

4.6.1 Duplicating Sejnowski and Rosenberg’s Experiments:

When NETtalk2 was trained on the same 1000 corpus of words used by (Sejnowski
et al, 1992) using BP it took around 7000 epochs, while with Rprop it took around 4000
epochs. For a listing of the 1000 words corpus, see Appendix D.
In the following experiments, we will concentrate on NETtalk2’s performance using BP

with the modifications that {Sejnowski ef al, 1992) introduced in section 3.2.3

NETtalk? on a corpus of separate words: After NETtalk2 has been trained on the 1000

corpus of separate words, it was tried on a corpus of 10,000 separate words (a continuum
from the Miriam Webster 's Pocket Dictionary) without further training. The correct output
was generated in 75% of the cases (compared with the result of 77% reported in (Sejnowski
et al, 1992)). When the larger corpus (the 10,000 words) was passed through NETtalk2 for
learning, generalization performance jumped to 90% after 100 epochs.

The same experiment was tried with an input window of size 11. When the corpus of 10,000
words was passed through the pre-trained net, it generated a correct output in 77% of the
cases. After § passes through the larger corpus, performance improved to 89%.

Different sizes of input windows were tried and varied from three to eleven. Both the speed
of learning and the neural net’s generalization performance improved as the size of the
window increased, also as reported by (Sejnowski et al, 1992) (refer to Example E3 and

Figure 4.1).

NETtalk? on a continuous text: To test NETtalk2 on continuous text, first it was

successfully trained ona corpus of 1024 continuous words, then passed over a continuation

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

64

of 500 new words and was able to generalize successfully on 76% of the cases (NETtalk
was reported to have succeeded on 78%). Which indicates that much of the learning was
transferred to novel words even after a small sample of English words was presented
(i.e.,, NETtalk2 was able to generalize on many new words even after few words were
presented during leanring).

If the previously-mentioned results on NETtalk2 are compared with results reported by
(Sejnowski et al, 1992) on NETtalk, a very close match will be found, which asserts the

vahdity of NETtalk2 as a model of NETtalk.

4.7 Training NETtalk2 on Arabic text:

The goal of this research is to train a NN to pronounce Arabic text. We chose the
way most researchers follow in this field, which is NETtalk, that has became a benchmark
in training NNs on text-to-speech problems. As described, a NETtalk-like algorithm was
devised and called NETtalk2. We ran NETtalk2 on English text and received very good and
close results to thosé of NETtalk (Seynowski et al, 1992).

We will now present examples on experiments we conducted using NETtalk2 on Arabic
text, then we will compare the results with those in the previous section where NETtalk2
was trained on English text. In the experiments here, the value of the leaming rate n used in
training is 0.35 and the value of the margin error € between required output and actual
output is 0.4 (i.e. if . £20.4 then the output is considered correct).

Finally, we will show the overall performance of NETtalk2 on Arabic text. Analysis and

further discussion of the results will be presented in Chapter 5.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

65

Example Al: On experimenting with the Arabic alphabet, all the alphabet was presented as
a continuous set of letters, NETtalk2 was then required to leamn it to be pronounced as all
letters being Front Low Unrounded” .

NETtalk2 learned the alphabet in around 38 epochs using BP and 27 epochs using Rprop.
While using BP, different values of the momentum o were tried every time (see the graph
in Figure 4.2). In the graph, the learning processes was stopped every 10 epochs and the
percentage of incorrect output phonemes calculated. It was found that, as the value of o
increases, the percentage of incorrect phonemes starts with a relatively big number, but then
decreases rapidly and NETtalk2 converges faster than if with a smaller a. Since the
learning speed depends on the convergence of the algorithm; it also increases with
increasing &, but starts to deteriorate with «20.4 due to over-training® .

Table 4.6 shows generalization and recalling tests after NETtalk2 has leamed the front low
unrounded alphabets. Figures refer to percentage of correct output phonemes in the

phonemic output string.

(7) Front Low Unrounded: o juis o~ ar .

{8) Over-training 1s the case when leaning is going fast due to a large momentum of learning rate, and it jumps in big
steps so it misses the glabal minima and diverges away from it. The symptoms of over-training is when the average
squared error reaches @ low value but then suddenly increases rapidly with an increasing number of training epachs that
might continue nfinitly.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Table 4.6: Training NETmalk2 on the Arabic alphabet (numbers represent percentage of correct output phonemes after

using BP for training)

66

alphabets as a set of
separate letters, using

one-line continuous
representation of the

one-line continuous
representation of the

s

size-7 window alphabets, using size-7 | alphabets using size-3
window window
Number of Epochs 49 (Rprop) 27 (Rprop) >2000 (Rprop & BP)
unti! 0% error 200 (BP) 60 (BP) (diverges)
convergence
recalling test using:
- 100% 50% 0%
"J
1
—)
generalization test
using:
i 50% 0% 0%
ah
generalization test
using:
10% 50% 0%

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

67

Om=0
B M=0.2
B M=04 . - P .
& Rprop -5 ﬁﬁ f:;. B IS
. o S |0 | . N
30 . “JEE B : ..
¥ o I S B I Rt
25+ \ -
Percentage of 20+
Incorrect phonemeqs Rprop
1: M=0.4
- " M=0.2
0 Momentum

10 20 30 40 50 60 70 BOM=O

Trining Epochs

Figure 4.3: Training NETtalk2 on the Arabic alphabets with BP using different Momentum values (M} on the z-axis and
with Rprop (last category on the z-axis). Values at the x-axis represent number of training epochs, while values at the y-
axis represent percentage of incorrect phonemes in the output string measured every 10 epochs during training.

Example A2: In this experiment, NETtalk2 was trained on a very small corpus of
continuous text using window of size 7, and then tested for generalization on different input
orderings of the same text.

The text is:
st 3,40 bt
NETtalk2 took 29 epochs using BP to learn this phrase. Table 4.7 shows results of the

generalization tests.

Afterwards, the phrase was extended to:

3

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

68

Rl

The phrase "<y o2, 15" alone took only 31 training epochs using BP, but when it was

combined as above, the whole sentence was used for training in two ways.
s When NETtalk2 was trained on it over the old weights from the first phrase (i.e., training
continued), it converged in an average of 40 epochs.
e When it was trained on it from initial random weights, it surprisingly converged in an
average of 37 epochs.
In these two cases, the average numbers presented were calculated over five tnals of the
same expenment.

Then the text was extended again to:
. . * [@ "
o oty v 2lind 03,1 b all Ol gl 8Ty 2 15 calal a3yl G

Which took NETtalk2 65 epochs of BP learning from initial random weights, generalization

tests were also carried as can be seen in Table 4.8.

Table 4.7: Generalization resuits of training NETtalk2 on different input patterns of the same Arahic text. Notice the
different cases of the Arabic letter “Alef ,* it appears with “Hamza™ in some input patterns and without “Hamza" in

others.

Input Pattern Percentage of correct output
phonemes

Suot Gt 1%
PIRURE 40%
G 30 ot 40%
obisf 8 b 100%
o3 ci:;h Ui 67%
ot G354 Ui 67%
33 0%

*55 25%

3 0%

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

69

Table 4.8: Generalization results on the final extended text of Example

Al
Input String Correciness percentage in output
i 0%
-
s 0%
ol 0%
e 0%
s Ei)u 3ol 36.4%
e 22%

The phrase: "Ll &3, Ui" was also used to test NETtalk2 convergence speed with different

values of the learning rate n , Table 4.9 shows different values of the learning rate with
corresponding number of epochs that NETtalk2 took to leam the phrase. In Figure 4.3 we
can see that convergence speed increases {i.e. number of epochs to leamn decreases) with
increasing the learning rate, but then starts to shoot off due to over-training after 0.55, the
value of 0.35 has the minimum number of training epochs, and can be considered a very

good value to implement 1n a learning algorithm, as recommended by (Rich er al, 1991),

Tabte 4.9: Leaning Rate n vs. convergence speed. Each number was calculated as the average over five

trials.

Value of the Leanring Rate n Number of training epochs NETtalk2 took to
successfully learn the phrase in Example A2

0.1 208

02 158

0.35 105

0.45 140

0.55 114

0.6 183

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

10

250

200 *
Number of \ /'
epochs until 455 A
convergence
reached \4‘.\‘/
100

50

0
0 01 02 035 045 055 06

Leaming Rate

Figure 4.4: Number of training epochs vs. Learning Rate.

Example A3: NETtalk2 was also tested on small Arabic stories using the default window of

size 7, an example is this story by the famous Arab writer, Gibran Khalil Gibran:

W
P (A VOV NE TIPSR VR VS N WP U YR g I S PR R FIR TSR VPLOY 1= TR Iy B PR PN

I._J;t_"_l.ﬁ-r-l.:és‘..,.:JJJWJi}tﬂ‘bi‘bi)k}nwﬁf‘:ﬁ{uﬁ@&f} c‘ﬁ-—ﬁu;&}brfb.l.:&J

J.
RESR] S

After 500 training epochs over this text using BP, NETtalk2 still did not leamn the text. It
reported a 1.4% error in the output phonemes. After around 3000 epochs the error increased
to 2.2%, although the momentum o was 0. This is a case where the net did not converge
(learn), but instead diverged away from the minima. In such cases, if the error in output is

measured during traning, one will notice that the neural net reaches a local minima, then it

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

71

cither gets stuck in this minima or diverges fast in a way that i1t misses the global minima.
Nevertheless. when Rprop was used, NETtalk2 did converge after 230 leaming epochs, but

the resulting net fatled the generalization tests, as shown in Table 4.10

Table 4.10: Results of generalization tests on a small Arabic story using Rprop as the learning algorithm.

Input string for generalization test Percentage of correct
output phonemes
s 5" L 37.5%
\L)

o3 0%
Sl 0%
skl oS ST, N b Ledis 3%
syl Ao (3 el 3 Jor) sl 20%

Example A4: NETtalk2 was also trained using simple Arabic text extracted from a children
story, The following text ts a small part from the Arabic version of the story of “Little Red

Ridinghood(®)

__u;:.,_.didjutohgﬁgbj:@dﬁj%laau Jgju—luhqu)rfc_m
'} . - _vl' - o»

R U U R L I PR R PRCHE Aot oy g s Al L, e

§
L

APC P P T S PRI gV SES TS IEIF S SRR YA [N A I

NETtalk2 was able to learn this text in 1600 epoch using Rprop. When BP was used,

NETtalk2 did not converge, and continued iterating for more than 5000 epochs. When the

{9) The Arabic version is "ol 3 U™ by Albir Mutlak, Library of Lebanon, Beirut, 1980,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

12

input window size was increased to 9 using BP, NETtalk2 was able to converge after 3040
epochs. Convergence speed increased with increasing the window size to {1, 13 and 15, but
generalization performance started decreasing after size 11 (Table 4.11b). A test of
generalization afler using Rprop was carried out as shown in Table 4.11a. Table 4.11b
shows the results of the same generalization tests, but after using BP for learing with

different input window sizes.

Table 4.11a: Generalization results after training NETtalk2 on a children Arabic story using Rprop with the default
window size.

Test Input string for generalization test | Percentage of correct output
number phonemes

testl L‘_,i N FRCIRY 46%

test2 Gt B)coad # dd sl SN ks 37%

test3 PN P NCP N A P 17%

testd o F g e 7%

Table 4.11b: Generalization results after training NETtalk2 on a children Arabic story using BP with different input
window sizes.

Input window sizes
_ e 7 9 11 13 15
Number of No 3040 3000 2952 2830
epochs needed convergence
until
convergence
Generalization Performance
Test Number Correctness percentage of output phonemes
testl 35% 40% 30% 18%
test2 18% 26% 17% 0%
test3 5% 8% 0% 0%
testd 56% 62% 30% 12%

Examplc AS: The following set of 40 words is part of the 1000 commonly used Arabic

words on which NETtalk2 was trained:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

73

, W W
,_r—i‘r;“"'L“‘-'Jl;':'rL‘LJ{LJ{EJj")‘.LL"’)L:'“J)LC”‘:"MJ}(;J:‘:‘J.J};:J-JJFEJ'JI'J-‘
C.ASTJS..‘- H}‘yﬁ)‘fﬁ‘ﬁdﬂ“d\f@“)bc—:’wr&\'dj;r—{gﬂ-:s.

NETtalk2 was trained on this text using BP in two cases:

1. As a corpus of separate words: After 2000 learming epochs, NETtalk2 still did not reach

successful training (i.e. 0% error on the training set), but was able to successfully learn 140
phonemes out of the 142 it was trained on and supposed to learn (so the error of running
NETtalk2 on Irhe training set is 2/142 = 1.4%). After the 2000 epochs, NETtalk2 diverged
and could not learn at all. When Rprop was used, NETtalk2 was able to reach successful
training after 159 leamning epochs.

2. As a corpus of continuous text: After 2000 learning epochs, NETtalk2 still did not reach

successful training, after the first 1000 epochs, it was able to reach 98.4% success on the
training set (that is, 1.6% error), after that it diverged and could not learn (took more than
5000 epochs and still did not learn). But when Rprop was used as the learning algorithm in
NETtalk2, it could learn the whole continuous text of 40 words in only 124 epochs. A
generalization test was carried on using the input strings in Table 4.12a.

Table 4.12b shows the same test but after different input window sizes were used during

training.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

T4

Table 4.12a: Generulization tests after training NETtalk2 on a continuous text of the first 40 words from the 1600 corpus
of commonly usod Arabic words, using Rprop and size-7 input window.

Test Number Input String Correctness percentage of
output phonemes after training
using size-7 window
testl BiLe 33%
test2 e B o i o 87%
testd s g 39%
testd 5y pd3 g o ondl S, 27%
tests plalah ol 35%
testé ke 90%
test? 35 0%
0,
A iy 3%

Table 4.12b: Generalization tests after training NETtalk2 on a continuous text of the first 40 words from the 1000 corpus
of commonly used Arabic words, using Rprop with different input window size during training. At size-3, NETtalk2 was
not able to converge. Test numbers refer to tests in Table 4.12a.

e Input window sizes
) 5 7 9 11 13 15 17 19 21 25
Number of 137 | 124 | 119 | 111 § 111 98 97 87 80 71
epochs needed
until
convergence on
the 40 training
words
Generalization Performance
Test Number Correctness percentage of output phonemes
testl 5% | 33% | 56% | 75% [50% | 20% | 0% | 12% | 0% | 0%
test2 80% | 87% | 95% | 97% | 85% | 60% | 40% [35% | 10% | 3%
test3 11% | 39% | 62% [80% | 71% | 50% | 22% | 0% | 0% | 0%
testd 14% | 27% | 47% | 60% | 40% | 21% | 17% [15% t 5% | 0%
testS 30% | 35% | 56% | 73% | 50% | 30% | 0% | 0% | 0% | 0%
testo 85% | 90% | 97% 1 99% | 50% | 35% | 33% | 33% | 0% | 0%
test? 0% | 0% |[33% |33% | 0% | 0% | 33% (33% | 0% | 0%
test8 40% | 53% | 73% | 83% | 20% | 14% | 14% | 0% | 0% | 0%

Another 60 words were added to the text (now we have the first 100 words of the 1000

commonly used Arabic words):

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

75
R : w
ol plms st ot plab I ST s b ol 3 00 s iy Ly G 2 ST S e s B e
. . i & L4 .
a3l ety L Ve L S H;xwx)\amﬁw\oww‘dlb@mrﬁ\‘g} S xS
w
I,J;EBL’..-‘ dedtfa).\a..-awa\yrﬁd)JrJLﬁ;hﬁfguaJ@@.anr,a.l.:.-.._‘...aj.ﬁ‘__._aj(_}i
At Al s e 05 5l i S 452 diade 04l O g5 ol 8 ST palor s aralor a5

Lkl s pglll gl Lt LI i a3yl and il sl it el U Ui 0

After 2000 epochs using Rprop, NETtalk2 reached 4% error on the training set. Using BP,

it did not converge.
As a test of generalization, the input strings in Table 4.13a were stepped through NETtalk2,

the results are still not much convincing for a net to pronounce Arabic text.

Table 4.13a: Generalization test on a continuous text of 100 Arabic words,
afier raining NETtalk2 using Rprop with size-7 input window.

Input String Percentage of correct output
phonemes
2 5 0%
R 20%
Y
vy
e ptlt Y o Y o 3%
a3 %
S
A
MJ.UJ
adgdar eSS oldm 0%

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

76

Other tests of generalization were also carried out on the first 300 commnoly used Arabic
words, when different input window sizes were used during training, as shown in Table
4.14. For a complete listing of the 1000 Arabic words used to train NETtalk2, refer to
Appendix D.

Table 4.14: Generalization test on a continuous text of 300 Arabic words, after training NETtalk2 using Rprop with
different input window sizes.

Input window sizes

NS 5 | 7 | 9 [11 [13 [15 [17 [19 [21

Number of 3100 | 3000 | 2930 | 2893 | 2820 | 2750 | 2710 | 2650 | 2600
epochs needed
until
convergence on
the 300 training
words

Generalization Performance
Input test Correctness percentage of output phonemes
string

[Ty TR S

2% 14.3% | 30% 89% 70% 55% 2% 14% 0%
st zlif aia | 0% 7% 20% | 33.3% | 33.3% 9% 0% 0% 0%

. 4 -
:JL!_h - _HJ-.‘:'.lht

e

7.3% 15% 30% 47% 41% 28% 0% 0% 0%

oL o .
[UPIE O L EY R R Vi

13% 24% 12% 80% 70% 33% 33% 17% 0%

St 5 aml ey

5% 18% 23% 56% 43% 20% 7% 0% 0%

EYWLE TN E S

n_.-JA‘.' 1} _..L- -u;é
R i g
JFS—T d ﬁ‘ : ,‘.B.h
it S el 10% 30% 47% 65% 45% 27% 14% 0% 0%
— ——— L ai;\ﬁ

S b

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

77

The first 10 words from the set of 40 words mentioned previously, are:
SRy S S B e s e

This set of 10 words was used to test NETtalk2’s performance with different input window
sizes during training using BP and Rprop. The window size was varied from 3 input groups
to 41. Tables 4.15a and b describe convergence speed and generalization performance of
NETtalk2 using these different window sizes with BP and Rprop as learning algorithms.
Notice that as the window size increases so does convergence speed (i.e. number of training
epochs decreases, although NETtalk2 takes more time to finish one epoch) and the number
of correct output phonemes, which results in better generalization. When the input window
was of size 3, NETtalk2 did not converge and was not able to train using either of the two
learning algorithms.

After observing the results in Tables 4.15a-b, we notice that as the window size starts
approaching 1, generalization performance saturates and then starts decreasing; due to the
large number of configurations and activations that the PEs must be arranged into. We will

discuss this thoroughly in the next chapter.

"

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

78

Table 4.152: NETtalk2's performance on Arabic fext using different input window sizes when BP was used as tearning algorithm
(Blocked cells indicme divergence).

Input window sizes

7 9 11 13 15 17 119 | 21 251 1 41

Number of
c¢pochs needed
until convergence
on the 10

training words

310 301 457 437 413 398 | 352 301 | 241 | 154 | 103

Generalization Performance

Input test Correctness percentage of output phonemes
string
ke s 1% | 61% | 78% [53% | 27.2% | 0% | 0% | 0% | 0% | 0% | 0%
iy d e 0% 9.2% 27.2% 10% 0% 0% | 0% | 0% | 0% | 0% | O%
A 0% 37.5% 50% 12.5% 0% 0% [0% | 0% (0% { 0% [0%
T 21% | 29% | 333% | 20% | 21% | 0% | 0% | 0% | 0% | 0% | 0%

b3
L=

3 S G iy iy 46.3% | 623% | 63.4% | 33% 28% 5% (0% | 0% | 0% | 0% | 0%
S e

By s e S 7.1% 15% 39.3% 3% 0% 0% { 0% | 0% [0% | 0% | 0%

Table 4.15b: NETtalk2's performance on Arabic text using different input window sizes when Rprop was used as learning

algorithm. Blocked cells indicate divergence.
LT T Input window sizes
5 7 9 11 13 15 17 19 21 25 | 31 41
Number of
epochs needed
until ' 37 28 29 30 32 26 28 28 27 27 25 26

convergence on
the 19 training

words
Generalization Performance
Input test Correctness percentage of output phonemes
string

¢y | U 1 333% | 89% 89% | 722% | 0% |39% |333% | 0% [0% | 0% | 0%

SRy 9% 45% | 363% | 545% | 20% | 0% | 0% | 0% 0% | 0% | 0% | 0%

e 0% 5% | 375% | 625% | 25% | 0% | 0% | 0% 0% | 0% | 0% | 0%

. ios.| 0% | V7% | 37% | 52% | 30% | 0% | 0% | 0% | 0% | 0% | 0% | 0%

WPEVRUTIRNTe 47% 67% 88% 78% | 58.8% | 45% | 0% 0% 0% | 0% | 0% 0%

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

29% | 39% 32% 43% { 214% | 21% [0% | 36% [20% | 0% | 0% | 0%

79

Large versions of the experiments mentioned in this section were used as a measaure of the

performance of NETtalk2 on Arabic text as opposed to its performance on English.

4.7.1 Measuring NETtalk2’s performance on Arabic text:

All running and testing of NETtalk2 was made on an IBM RISC RS/6000 machine.
NETtalk2 was trained on two forms of English text (section 4.6.1), and on two forms of
Arabic text: using a corpus of continuous text, and a corpus of 1024-commonly-used
separate Arabic words.

Numbers in the following paragraphs refer to results using the default size-7 window during

training, unless mentioned otherwise.

NETtalk2 on a corpus of separate Arabic words: A corpus of 1024 commonly used Arabic

words was formed (Appendix D). An attempt was made to train NETtalk2 on this corpus,
using BP. Upon tracing the average squared error value as it changes during training, it was
found that, usually after about 3000 epochs, the leamming process would fall into a local
minima and gets stuck, so it does not converge to the global minima needed (this happens
technically when the average squared error (equation {11} in Chapter 3) reaches a certain
value and sticks there). In some cases when the momentum o was increased (but never
more than 0.4; because this led to over-training), NETtalk2 was able to climb slowly out of
this minimum (the average squared error starts changing slowly), very slow that it would
take a large number of leamming epochs compared with NETtalk, in such cases NETtalk2
was stopped after 25000 epochs and the average squared error found not less than 0.55

{when £=0.4).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

80

When Rprop was used, NETtalk2 was able to jump over some local minima to the right
direction, or climb out of it fast and smoothly (also observed by tracing the average squared
error during training) in around 7100 epochs. Nevertheless. generalization results were not
promising and generally did not surpass more than 60% of correct phonological output
(like in examples A4 and AS discussed previously). One can deduce that, even if NETtalk2
was able to converge and learn the given corpus in some cases, it does not generalize to a
reasonable percentage of correctness of the phonemes in an output string, corresponding to
an input string of Arabic text.

Analysis of this behavior and reasons behind it will be discussed in the next chapter, where
more about NETtalk2 performance will also be discussed. In Chapter 5, we will see that
one of the most important reasons why NETtalk2 did not converge was the existence of
some words more than once in the same training set but requiring different output
pronunciation each time.

(Sejnowski et al, 1992) also faced the same problem in some cases with the English

language as mentioned previously in section 3.2.4 {quoted n Italics).

NETtalk2 on a continuous corpus of Arabic words: Training attempts were also tried on

different pieces of Arabic text and also on the same previous 1024 corpus, but in the form
of continuous text, using BP. In this case NETtalk2 did not converge.

What continuous text possesses that separate word corpora lack, is the semantics and the
rules that govern Arabic grammar and make a sound and correct Arabic statement (refer to

Chapter 5).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

81

As {Sejnowski er al, 1992) did with NETtalk on English text, input groups of sizes 3 to 41
were tried with NETtalk2 on Arabic text, as we saw in the previous examples. These
-
experiments were also carried out on the 1024 commonly used words. When the sliding
input window was of size 3, NETtalk2 could not learn and did not converge even if Rprop
was used. At size 5, some cases were not able to learn, but others were able to learn and
converge. As the window size was increased from 7 to 41 (7,9, 11, 13, 15, 17, 19, 21, 25,
31, 41) the speed of learning and generalization performance increased. Generalization
performance saturated at size 11 with about 70% correctness on average, then started to
decrease. The reason is that NETtalk2 in this case needs more training cases and input
configurations to store, and be able to generalize using this large amount of input, presented
through the large window.
NETialk2 was also tried on a continuous Arabic text of around two pages (an Arabic story
by Gibran Khalil Gibran), where it unfortunately got stuck and did not converge.
On a small piece of text (2 paragraphs) from the daily newspaper, it did converge after 1700
epochs using BP. Then a continuation (a third paragraph) was passed through NETtalk2 as
a gencralization test, to result in only 30% correctness in most output cases. When the third
paragraph was combined with the training set, and then passed through NETtalk2 for
another 500 epochs, performance jumped to 70%, before learning was complete (100%)
after 3500 epochs. For a listing of all the training sets, see Appendix D
In an attempt to avoid complexity of the input text and redundancy of input pattems with
various pronunciations, attempts were made to train NETtalk2 on small simple children
Arabic stories, as in Example A4. In another expenment NETtalk2 was trained on the

Arabic version of the children story of “Little Red Ridinghood™ (except the last 2

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

82

paragraphs in it) and did converge in 2000 epochs, using Rprop. The last two paragraphs
were then passed through the NN as a test of generalization, to result in around $3% correct
output. This result increased to 66% when an input window of size 11 was used, but still
not enough to state that we have a NN that can at least pronounce Arabic children stories.
Most training cases that did not converge when the window size was 7 or 11, using either
BP or Rprop as learning algorithm, were able to converge after increasing the window size
to 25 input groups and more, but generalization results were very bad (not more than 20%
generally).

After expenimenting with BP and Rprop, one might wonder if a NN -especially NETtalk2-
produces better generalization results after using Rprop as a learning algorithm compared
with BP. To answer this consider the following example:

After training NETtalk2 on the Arabic alphabet (Example Al), generalization tests
(mentioned in Table 4.16) were made, first after NETtalk2 has leamned the alphabet using
BP and then after itlearned it using Rprop. It was found that NETtalk2 generalizes better
and is able to recall better after being trained using Rprop, this is also obvious in Tables

4. 15a and b.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Table 4.16: Generalization and recall results after training NETtalk2 an the Arabie alphabets using BP and Rprop with

the detault window size.

83

Testing Cases Correctness pereentage in Correctness percentage in
phonological output phonological output
generated after BP learning generated after Rprop
learning
50% 61.5%
-t
J
3
o
14
L
i
—
i 0% 0%
u‘“i
e 0% 0%
Sorrrpeowt 66.7% 83%
TLT -

Most of the experiments mentioned in this chapter, were also ran using a commercial NNt
Leanring and generalizaton results were compared with those of NETtalk2 and found to be
close as much as 3% in generalization cases with a difference of only 5 or 10 epochs less
during training (NETtalk2 even reported faster training and better generalization results in a
small number of cases). This commecrial neural net (called F.A.S.T.) also did not converge

on cases were NETtalk2 did not. This assured that NETtalk2 algorithm is working fine.

{(10) F.A.S.T., developed by Lars Kindermann (kinderma@forwiss uni-erlangen.de) at the University of Erlangen,
Germany.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

84

4.7.2 Using Multiple Hidden Layers in NETtalk2 with Arabic Text:

In other experiments we increased the number of hidden layers in NETtalk2.
In the first experiment, two hidden layers were used of sizes 40 (i.e. NETtalk2's topology
was 231-40-40-8). In this case NETtalk2’s performance was the same when it had one
hidden layer of size 80, except that it took more processing time to finish one epoch and
‘also took more epochs to leam. Generalization ;;erfonnance was almost the same.
In the second expenment, two hidden layers of sizes 80 were used (topology: 231-80-80-8).
Compared with having only one hidden layer of 80 PEs, this network was somewhat better
in generalization but about the same in absolute performance; in the sense that
generalization performance mncreased by 5%, but leaming took too much time to complete.
For example, leaming the 1024 corpus of continuous words took around 31500 epochs to
complete, and generalization tests showed 72% correctness on novel words.
In the third Experiment, three hidden layers were used, each consisting of 80 PEs
{(topology: 231-80-80-80-8). Compared with having one hidden .layer of size 80, this
topology lead to very law successul rates in generalization and increased training epochs.
For example, learning the 1024 corpus of continuous words took around 71200 epochs, and
generalization tests showed 40% correctness on novel words. .
In the fourth experiment, two hidden layers of sizes 120 units each, were utilized (topology:
231-120-120-8). In this experiment, generalization performance was 8% better than having
one hidden layer of 80 PEs (units), but leamning took around 50000 epochs on the average.
For example, learning the 1024 corpus of continuous \:fords took around 49200 epochs to

complete, and generalization tests showed 76% correctness on novel words,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

85

4.7.3 Configuring NETtalk2 as a Recurrent Neural Network for Pronouncing Arabic
Text:

As NETtalk2 steps through the input text, seven graphemes at a time, a mechanism
may be needed: to allow it to remember the previous context (i.e. the previous seven
characters it has already stepped through)

In an attempt to enable NETtalk2 to remember previous context when capturing the
features of the current input during training, we changed NETtalk2’s topology to be
recurrent. We used the Jordan model (Rich ef al, 1991).

In the Jordan model, output from the output layer is linked back to PEs in the hidden layer

through a layer of “Current Units " as seen in Figure 4.4,

P A T M R e e e ——————-

% Hidden Units i
£ 5 |
: 0 Output |

<X

LY
L]
'
¥
L4

Current Units

P R E L T

Figure 4.5: This showsa 1-2-1 netwark with Jordan style recurrent links. The cutput of the nerwork is fed into
the {twe) current units directly without any weights {the dashed lines in the figure). The current units output’s are
fed into the hidden units and back inte themselves. All current units arg autorecurrent. Recurrent neural networks
are characterized by their ability 1o remember, as the Current Units represent previous output of the net (Arras er
al, 1996).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

86 -

In its recurrent form, NETtalk2 has the same old topology (i.e. 231-80-8) plus a layer of 80
current units. The learming algorithm used is BP {(sometimes we tried Rprop).

We trained this network on the continuous corpus of 1024 Arabic words. Using Rprop and
a size-11 nput window, it was able to leamn the whole set in 30500 epochs. After that, a
continuum of 300 words was presented for generalization, and NETtalk2 was able to
generalize successfully on 77% of the input. We also trained NETtalk2 on the Arabic
version of the children story “Little Red Ridinghood” (see section 4.7.1), it was able to
learn it in 2130 epochs. The last two paragraphs of the story, which were not presented
during training, were presented as a test of generalization. NETtalk2 was able to generalizae
successfully on 78% of the input.

We can claim that, using recurrent topology with Rprop and an input window of 11 input
groups, generalization power of NETtalk2 increases by about 12% than its default topology

(section 4.2), although learning speed does not increase.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

87

Chapter 5
Analysis of NETtalk2 Performance on

Arabic Text

In this chapter we will talk about the performance of NETtalk2, and analyze it
from input to output. We will also shed light on the reasons why results of NETtalk2

generalization on Arabic language are not very successful.

5.1 Analysis of the Input:

In the previ;)us chapter we presented cases of NETtalk2 where different iput
window sizes were experimented with. For the sake of analysis and comparison with
NﬁTtalk, we will discuss NETtalk2 here using a 7-character-wide sliding window to
capture the input. The analysis of this window below can be extended on other window
sizes wi_thout modification.

Using this 7-character-wide sliding window, NETtalk2 utilizes the three characters at
the _left .of' the middle one, and the other three to its right as a surrounding environment
to detect the appropriate pronunciation (phonological representation) of the middle
N character.

We. ‘@g_r-eed earlier to refer to this 7-character-wide window as size-7 window. We will

represent it here as an input pattern that looks hke:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

88

"1-$—s#"_-_
Where # denotes the middle letter in the window, which is to be pronounced and

assigned an appropriate phoneme as output; depending on its surrounding 6 letters.

Let us set # as aconstant for it is the letter that will be pronounced, say the letter *'¢ .

Every other surrounding letter may be any of the 28 Arabic letters (left aside word
boundaries, spaces, gemination and punctuation marks), there is also a possibility that
any of the surrounding letters (especially the first one next to # on the left) is a space,
denoted by $:

",'sSs#»"';'

This represents the case when the middle letter in the window (the # here), occurs as the
last letter at the end of an Arabic word, in a continuous text being stepped through the
window.

Now, we have around 5 places (denoted by -) where each oﬁe can take any of the 28
Arabic letters, this yields a number of 28° = 17,210,368 different input patterns for the
letter #. This 1s also the case in NETtalk, but in Arabic language a letter can also take on
any of three shapes: at the beginning, middle or ending of a word. This adds more input
patterns to the number above, about 28° x 3.

To overcome the problem of an input letter having more than one shape, the pre-
processor accompanied with NETtalk2 (refer to section 4.3), will read the input Arabic

text and turn all the different shapes of every one letter to one unique binary

6, &6

representation, to be input to NETtalk2. For example, take the letter *#*, in the

following text:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

it has three different shapes according to its place in a word (frontal "—&"), (midial

“—") and (final “»—"). The pre-processor will read the text and convert all the "o s

that might come through into the pattern 000000000000000001000000000000000

which is used as input to NETtalk2 denoting the letter ¢ “ in any case. Same applies on

all other letters of the alphabet.

As NETtalk2 leams, it passes through a learning set with different input pattems,

requiring different output patterns, depending on different reasons discussed next.

3.2 Output Analysis and Thorough Investigation of NETtalk2:

After presenting NETtalk2 performance and generalization results in section 4.7,
we noticed the low convergence speed of the leaming algornithm (or non-convergence in
some cases), and the low success percentage in generalization tests.

After analysing the results, we believe that the following features of Arabic text make it
difficult for NETtalk2 to converge or to generalize. Examples and Experniments

mentioned with each feature were conducted to support these beliefs:

1) A single letter can be represented to NETtalk2 in a large number of different input

patterns (i.c. too many patterns for each letter): As shown in the previous section, a

single letter in the middle of the input window may be surrounded by six different

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

90

letters in different contexts. leading to more than 28° (may be 28°) number of input cases
for cach of the 28 Arabic letters, and more when using larger input windows.

This same case appears also tn English text, but two points contribute to the fact that
NETtalk? (and so NETtalk) performance on English text is better than its performance

on Arabic, the two points being:

i. The English alphabet contains only 26 letters, which makes the number of
input patterns approximately 26°, instead of the 28° patterns in Arabic, which has
28 letters in 1ts alphabet. This less number of input patterns (cases) in English,
turned out to be quiet enough for training and generalization as the experiments
and results show in (Sejnowski et al,1992), who say: “Learning was transferred

to novel words even after a small sample of English words was presented.”

il. A considerable number of English letters usually have the same pronunciation
wherever they appear. Take for example the letter “n”, in most training and test
cases, 1t was found that this letter (and many others like it} has the same phoneme
\n\'" every time it appears. This makes it easier for NETtalk (and so NETtalk2)
to easily capture this feature and successfully generalize on texts that have the
letter “n” (and many others like it), because it always has the same output
phoneme, which does not require that NETtalk\NETtalk2 be trained on a lot of
different input patterns that “n” might appear in (see the material about how

NETtalk generalizes in section 3.2.4).

(1} Phonetic representation in NETtalk2 follows that of Webster's Ninth New Collegiate Dictionary, MERRIAM-
WEBSTER Inc., Publishers, USA, 1985.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

N

In Arabic, a single letter has ar least three different pronunciations: Front Low
Unrounded. Front High Unrounded and Back High Rounded'® . These
pronunciations, wﬁich should be output by NETtalk2, depend on the context in
which the letter appears. This context does not only include the nearby letters but
could mclude the whole sentence in which the letter appears.

Consider this experiment: NETtalk2 was trained on a text where the letter “n”
appears in different cases, and then a generalization test was conducted using
words that contain the letter “n”, but did not appear in the training text. Here is

the text that NETtalk2 was trained on:

Nigel is nearly not into this nonsense

Table 5.1 shows generalization test strings presented to NETtalk2 after it was
trained on the above text, and clarifies whether NETtalk2 was able to identify “n”
as /n/ or not. Notice that “n” appears in different places in the strings used for the

test.

Table 5.1: Identifying “n” as the phoneme \n\ during a generalization test on NETtalk2.

Input for generalization test Did NETtalk2 identify “n” as /n/ or not?
Night YES
bend YES
burn YES
sense YES

"% front Low Unrounded ¢ i~ /), Front High Unrounded ;%= (), Back High Rounded ¢y (°)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

92

The same experiment was carried on the following Arabic text:

A, Y 7

& 2

[T)

In the above text, the letter “; ™ appears in three shapes (frontal *—"), (midial

[

“—=") and (final *,—"). After NETtalk2 has learned this text, a generalization

test was made (see Table 5.2) and it was supposed to 1dentify “¢ ™ as either \Ta\

(front low unrounded), \?1\ (back high rounded), or \Yi\ (front high unrounded)
according to its place in the input test string and from what it has learned.

Unfortunately, In most cases it did not, even with an input window of size 11.

Table 5.2: Identifying “¢ ™ correctly during a generalization test on NETtalk2.

Input for generalization test Did NETtaik2 identify “¢ ” correctly?
s NO
-L.Ajl NO
“f
e NO
%_j, s YES

2) A single input pattem occurs more than once requiring a different pronunciation each

time, depending on the Arabic grammatical semantics resulting from its syntactic
position in a statement.

This occurs in some cases in English, an example in English is the pronunciation of the
letter “a”, in some contexts it 1s pronounced as \a\, and in others (usually when there 1s

an “¢” at the end of a word) it is pronounced as \a\.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

93

A single Arabic letter might be: Front Low Unrounded. Front High Unrounded, Back
High rounded. or Consonant'" . Sometimes, in handwriting, these features are signified
with unique marks typed above every letter (mentioned in Footnotes 12 and 13), so that
the human reader can tell the correct pronunciation of a letter. But in our model, text is
émered into the computer using a keyboard (the Standard 101/102-Key keyboard),
which does not contain these marks, so there is no indication that an input letter 15 in
any of these four features. This forces NETtalk2 to take in the same input pattern
different times as it occurs, but each time, the middle letter in the window might have
any of the four marks mentioned above, requiring different phonological representation

(output) each time. This results in the following two problems:

i. To be able to capture the surrounding context of a letter, in order to assign to it
the appropriate representation out of its four possible ones, a very large window
size is needed. For a NN (here NETtalk2) to be able to pronounce the letter
correctly, it should be trained with many different input patterns in which a letter
(#) might appear, and their mappings with the appropriate output phonemes. This
requires: (1) A large window to include surrounding words of the letter # -not
only surrounding letters- which in its turn requires a big NN structure to capture
the different mappings and save them as configurations (weights) in the hidden
connections, (2) A very large training set to capture most of the cases, or at least

the most frequent oncs.

{13) Consonant -5 (9).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

94

A big structure and a large training set will most probably take a lot of working
memory and processing time. In section 5.3 we will talk about using larger

window sizes in training NETtalk2.

ii. A neural network might not learn Arabic text, that 1s; the learming algonthm

might not converge, which actually happened during many of the learning

attempts. We will come to this later and discuss it in more details in section 5.2.1

3) The pronunciation of one input letter in a pattern is usually represented by more than

one output phoneme: The phonological representation of an Arabic letter, most of the

time, involves the original phonological representation of the letter in its consonant case
plus a vowel phoneme (a (), u °) ori ()), or a double vowel phoneme (an ("), un (*) or

Y
in ()). For example, the letter “+* in the word “,1=™ is pronounced as \munh\.

This case of more than one phoneme representing one grapheme, occurs i English with
letters like “'x”, whose phonetical representation involves two phonemes, \ks\.

It is known that a neural network takes only one input at a time at the input layer and
gives only one corresponding output (one-to-one mapping). This problem of one input

requiring a combination of output phonemes, can be overcame by expressing each of

these phonemic combinations as one new single phoneme. For example, the letter *“o*

can have any of the following phonemes:

\b\, Ybu\, ‘ba\, b1\, \ban\, ‘bun\, \bin\, ... and so for other letters of the Arabic

alphabet....

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

95

Each onc of these is considered as a single phoneme that is represented by a unique
binary pattern at the output layer and in training pairs, they are part of the set of

phonemes used by NETtalk2 and are .implemented as single phonemes (so the word

“e—le" is represented as \ Tilmun\). As we can see, this increases the number of

phonemes considered by NETtalk2, which requires enlarging the training set adding

more overhead to the training process in NETtalk2.

4) Some input patterns are not pronounced: This happens when there is a pattern at the

input layer, but NETtalk2 is not required to yield an output. The most commonly

-
i pnw

occurting input pattern is “J'* as in 207 (amad-JY), where the letter “J* should not

be pronounced. Another example, the word “. S its pronunciation is \ Taddarb\, the

\d\ appears twice, because “>* is stressed, but the *“J* did not appear at all. To overcome

this problem, we insert adummy character at the input string (in the training vector) to

cover for the absence of a phoneme that should correspond to the input “J%, so

\Zaddarb\ will be \Zasddarb\. Also notice in this particular example, that the second \d\

corresponds to the gemination mark “““*

, which can be typed with the input text by any
standard Arabic keyboard. The dummy character (=) affects the training process, in the
sense that NETtalk2 trains on it like it trains on spaces between words, but it does not
have a sound effect when the output sound file is generated, it is just skipped.

This case occurs in English text too, with combinations like, “ch, sh, th, tion,...etc”,

where a combination of letters is pronounced by only one phoneme, or a number of

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

96

phonemes less than the number of input letters. In such cascs, we say that a phoneme
corresponds to a cluster of letters.

In NETtalk, when a phoneme corresponds to a cluster of letters, the phoneme 1s most
closely associated with the first letter of the cluster, and is, accordingly, placed in the
same position as the first letter. Hyphens (instead of the dummy characters we use with
NETtalk2) are placed in the remaining positions. In some cases there is a letter
common to many or all of the letter clusters associated with a particular phoneme, and
the letter does not come first in some of the clusters. In these cases the phoneme is
placed in a position comresponding to that letter, and the other letter positions are filled
with hyphens. For example, the sound \n\is associated with the letters *“nd.” This is
coded as \n-\, with the \n\in the same position as the letter “n,” and the hyphen in the
position of the “d.” The \n\sound is also wntten as “gn,” “sn” and “kn”. Here, the \n\
phoneme is associated with the common “n,” not the differing initial letters, so all of
these graphemes are coded as \-n\, where the \n\ 1s placed opposite the second letter

“n” instead of the letter that varies.t'

S) There is no input, but the NN is required to yield a phoneme, usually an elongation

(13 H H l 1Y .
phoneme. Some examples are the words “ oila it s a5 <% Notice the

clongation mark (), It can’t be typed into an Arabic text by the standard keyboard, but
15 pronounced as \a:\ and a phoneme should be given as output by NETtalk2. In this
case, we cannot help but write the text as is, and ignore the elongation. It will not be

pronounced because there is no indication of its existence, which makes NETtalk2

{14) Reference from The [nternet, http://herens.idiap.ch/~miguel/dbases/nettalk/nettalk.info

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

97

present wrong pronunciation of the whole word, contributing more to bad generalization
results.

We looked for this case in English language, and were able to find a close case (not a
very similar one). From the Internet', Scott Fahiman says about NETtalk:

“Some words used phonemes that were not matched by any letters in the word.

The word 'eighth’ is an example. 'Eighth’is phonemically coded by Webster's as /etT/,
but there is no clear letter for the /t/. The dictionary uses /e---T-/, dropping the /t/." (by

“Dictionary” here he means the set of phonemes used by DECtalk and NETtalk)

5.2.1 Non-convergenve in NETtalk2:

The five points presented in the previous section, are the main and most
important reasons, we believe cause bad generalization results, and in some cases non-
convergence it NETtalk2.

For an example of the case where an input pattern occurs more than once in different

contexts, and requires different pronunciation (output phoneme) each time. Consider the

letter “_** in the word ‘=" in the following example:
r s
a) ;_u-"-- b ‘.,;-l.l.?- ‘;._51 _.._:J
¥ y 2
When the letter “o* is the middle letter of the size-7 input window, the window will

lock like this:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

98

.. 4 - 7/
) . 0,8, e, e, 8.8
/

v >y 5 ¥
b) "'-'39!1579,"-3\“1} $

L
P

In this example, there is only one input pattern. This pattern occurred twice, (a) and (b),
but in (a} the output should be the phoneme /ba/, while in (b) it should be the phoneme

/bw/. The Arabic language contains many cases like this. To mention some:

QLI.L.AI L
c.‘_'-f ’ ’J
ci) LC’J

00

As we all know, we can train a typical NN to yield 1 as output for an input of value 1, or
0 as output, but not the two outputs for the same input. When this occurs in a training
set, it is obvious that a leaning algorithm will not converge, this is exactly what the

previous example is all about. It also occurs in Arabic in cases like this example:

P

a)i\JJ_H N

by 4,0 &

’

In either pattern the input to NETtalk2 is the same when the letter **,” is the one to be

pronounced:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

99
;,$,~e,).d-'o.$,$

But the phonological output should be /ra/ in case (a)and /ri/ in case (b). Same also

LI

applies for the letter “ 2" in the same example, and for the letter “¢ ™ in this exmaple:

e

a) Ll s

H s * s

L&, KE

Another example, notice the pronunciation of the letter ¢ “ In the wor, “" m these

patterns:
77y

1) sJdslh o s,:_._qu JL.J

) I 7
2) b}l o (:J_Ju J.iﬁ." Condired
i

L1} L1}

The pronunciation of “¢* was different every time depending on the grammatical

semantics resulting from the syntactic position of the word “x*, which was subject in

the first pattern, and object in the third one. Such grammatical and semantical

information cannot be explicitly encoded in the input to NETtalk2, nor can it be captured

(11 (13

by the size-7 window, as in the second pattem, the pronunciation of “¢ ** depended on its

9" right-most neighboring letter. A larger window size reduces the effect of this

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

100

probleny; because it reduces the number of sinular input pattems introduced to
NETtalk2. requiring different outputs each time, and thus leads to convergence.

One might think of ignoring the fact that an Arabic letter has four different
pronunctations, and thus reducing the effect of this problem on the learming process. by
trying to train NETtalk2 on a text and requiring it to learn on all the letters in this text
being only consonants.

Below, are examples of experiments that were conducted in which NETtalk2 was
trained to pronounce a given Arabic text in all consonants letters, generalization
performance was measured, and then NETtalk2 was trained on the same text but with
the correct pronunciation, also generalization performance was measured then and the
two cases compared. Comparison revealed that, NETtalk? takes less training epochs on
the same text when it is in consonants form (about 50% less training epochs), and makes

about 30% better generalization results.

Example A7: In this experiment the following text was presented to NETtalk2 twice,
once trained for an output of all consonant letters, and the next time with correct

pronunciation:

2]
J(a‘_:'-i_‘.ﬂ..k..:’—i.i}JlTL.f-riQ;\:.-a:-JLJit-‘SJt;L,HCL,.aJM_}rﬁin;;()ii z-\.g.:ﬁt.JLb«L‘s
4

L %
Do Gole O 71 e da? o L

Table 5.3 summarizes generalization results when the net was trained on the text with

all consonant letters:

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

101

Table 5.3 Generalization tests when NETtalk2 was trained on the text in example A7 as all consonant letters,

Test string

Correctness percentage in
output phonemes

Correctness percentage in
representing the phoneme for

Jgr-Jl‘;.ﬂJ.JrLi

e
1ot e 87% -
agzs b 87% -

pr JS et g4k 80% 100%
all baes o i 50% 100%
p3) e das o6 97% 100%

60% 100%

While Table 5.4 shows the results with the same generalization test, but when NETtalk2

was trained on the text with correct pronunciation.

Table 5.4 Gencralization tests when NETtalk2 was trained on the text with correct pronunciation.

Test String

Correctness percentage in
output phonemes

Correctness percentage in
representing the phoneme for

ﬁf""'.“ ;_»’.LJ ‘Pu

l(:“
IV G 50% -
ETLe .__,;Lb e
#lee UG 0% -
e [P & o 57% 100%
n)L.a.h J; {1‘__‘: r}é 286‘%) 0%
eyl a g 4 64.7% 100%
50% 100%

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

102

Examplc A8: We repeated the experiment in example A7 with the following text:

Cadesl Lk Lce ‘;,A-.'I-Ju B el ::;L_Ji ooy Uf‘?@'u S et Bl w8 L 2isld J»-E:p.lu ;L::

d)g.;JML{éJJ

Table 5.5 summarizes generalization results when the net was trained on this text as all

consonant letters, while Table 5.6 shows the results with the same generalization test,

but NETtalk2 was trained on the text with the correct pronunctation.

Table 5.5 Generalization tests when NETtalk2 was trained on the text in example A8 as all consonant letters,

Input String Correctness percentage in Correctness percentage in
output phonemes representing the phoneme for
“t”
[CEA A 43 330/0 1000/0
Aot 2l prd 40% 100%
Las o 90% -

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

103

Table 5.6 Generalization tests when NETtalk2 was trained on the text in example AS with the comect pronunciation.

Input String Correctness percentage in Correctness percentage in
output phonemes representing the phoneme for

) I(&I'l

sl e gy :h:ci.md 43% 0%
- T) 0

& s 7 0% 0%

> e

ry sz‘x)l.‘ 3% -

5.3 Using Different Numbers of Input Groups in NETtalk2:

We saw in Chapter 4 how different input window sizes were used for training
NETtalkZ on Arabic text. Results in Chapter 4 revealed that generalization performance
increases with increasing the window size and saturates at size 11 (and 13 sometimes),
then 1t starts to decrease dramatically, Nevertheless, learning speed increases linearly as
the window size increases.

When the input window size increases, NETtalk?2 is able to capture more features of the
current context, helping it to identify different graphemes during generalization. This is
why generalization performance becomes better with increasing window size. But, when
the window size becomes larger and larger (15 and more) too much context is presented
in a small number of smaples, and features representations are scattered in different
places all over thc hidden connections among PEs, in the now large structure. This
weakens the classification power of the net and thus its ability to identify different and
unique graphemes (input pattems), which results in bad generalization performance.
This problem also starts to ;clppear when NETtalk2 has more than two hidden layers (see

section 4.7.2).

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

104

One good advantage of large window sizes, is that, occurance of the same input pattern
more than once, requiring different output each time, no longer gets NETtalk2 stuck in
some local minima (and thus not able to learn). Simply, because this input pattern is no
longer the same in each occurance; due to the fact that a large window captures also
more surrounding features which are different in each occurance, canceling the

uniqueness of this input pattern. Consider the following example:

» o
) QO DR

b)JJJJ._H o J_?a KW

/

Using an input window of size 11:

a) ;.J,‘,$,Q,),J,$,$,$,$

b) },J,',S,HJ,J,U;’,S,Q,J,J

The input pattern in (a) 1s different than the one in (b). In this case, NETtalk2 will be
able to converge but will take too much time climbing out of the small local mimina,
which 1Is the result of the overwhelming resemblance between the two patterns, for they
are different in only three input groups out of eleven.

Another example is in the patterns:

- b i
a) adelll - EERE L

-

b) sdaldt o EERY f'a.n o d
)

eE, ¥

To correctly identify each one as a unique pattern to pronounce the letter ¢ ”, the input

window should be able to capture the “<” in the second pattern, which is the 9" right-

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

105

most letter to ¢ ", and this requires the input window to be of size 19 at least. But. as

we described before, unfortunately, with such large sizes, the generalization

performance degrades dramatically.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

106

Chapter 6

Conclusion and Future Work

6.1 Summary and Conclusion:

In this thesis, we constructed a NETtalk-like neural network, called NETtalk2.
We trained NETtalk2 on pronouncing English text, in order to compare its performance
with that of NETtalk as reported in (Sejnowski et al, 1992), then we ran NETtalk2 on
Arabic text and compared the results with those of English. We analysed the input, the
output and representation in NETtalk2, and were able to identify reasons behind its
failure to generalize reasonably and sometimes even to learn to pronounce Arabic text.
NETtalk2 can be described as 231-80-8 MLP (MultiLayer Perceptron) artificial neural
network, that uses supervised error-backpropagation learning (BP). Like NETtalk,
NETtalk2 utilizes a sliding input window that can read seven groups of graphemes (in
other experiments the number was varied from 3 to 41) at one time, then it generates an
appropriate phoneme and voice corresponding to the middle grapheme in the input
window, utilizing the other six graphemes as context.
NETtalk2 was trained on English text in two forms (as was NETtalk):
1. A corpus of words: Each word was presented separately to NETtalk2. It was able to
learn the 1000 most commonly used English words in around 7000 training epochs.
NETtalk2 was then passed on a continuum of 10,000 words, and the correct output

phoneme was generated in 75% of the cases. When the 10,000 words were added to

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

107

traming, generalization performance jumped to 90% after the first 100 epochs of
training.

2. A corpus of continuous text: NETtalk2 was trained on a continuous text of 1024
words. then passed over a continuation of 500 words and was able to generalize
successfully on 76% of the cases.

In either of the two forms, other tests were made with a different input window size
each time. The size varied from 3 groups to 11. Usually generalization performance
increased by no more than 7% with increasing window size, accompanied of course by
increase in the leaming speed, but generalization starts to deteriorate after using 13 input
groups and more.

The above two forms and other expenments with NETtalk2 on English text, can be
found in details in section 4.6.

Training NETtalk2 on Arabic text was mainly also in two forms:

1. A corpus of words: A set of 1024 separate Arabic words was chosen from everyday
use. NETtalk2 was not able to learn on the corpus and was stuck after 3000 epochs,
with the average squared error around (.55, momentum value of 0 and learning rate
0.35, using the BP leaming algorithm.

2. A corpus of continuous text:

« NETtalk2 was trained on the same set of 1024 commonly used words from
point 1 above, but as a continuous text and was not able to converge, even
when changing the learning rate and the momentum.

« An Arabic novel by Gibran Kahlil Gibran was passed through NETtalk2 for

learning. NETtalk2 did not learn it and got stuck in a local minima.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

108

s Two paragraphs from an essay in the daily newspaper were passed for
learmming, NETtalk2 was able to learn them in 1700 epochs, the third
paragraph was then used to test generalization performance of the net, which
did not exceed 30%, but when this paragraph was added to the training set,
performance jumped to 70% after another 500 epochs.

For details on these experiments, refer to section 4.7.1.

Other experiments of NETtalk2 on Arabic text involve:

1- Training NETtalk2 on the Arabic alphabet using BP with leaming rate of .35 and
varying the momentum a from 0 to 0.4. The value of 0.4 for the momentum was
found to be a very good choice for fast learning. Increasing this value to more than
0.4 would lead to over-training (refer to example Al and Figure 4.2).

2- NETtalk2 was also trained using different window sizes, ranging from 3 to 41 input
groups. Experiments in section 4.7, show small increase in generalization performace
and training speed with increasing the input window size. When the window size was
of 3 input groups, NETtalk2 could not converge. As this window size increased so
did the leanring speed. Generalization performance also increased as the window size
increased from 5 to 11, becuase NETtalk2 was able to capture more surrounding
context with more input groups, which lead to better identification and generalization
power. However, this power starts to deteriorate when increasing the window size
more than 13 input groups; due to the large amount of features presented to
NETtalk2 that require classification compared to the small number of samples (input

patterns) in which these features were presented.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

109

3- Expeniments with different learning rates were also conducted, revealing that a value
of 0.35 is a good choice for fast leaming, as NETtalk2 starts to shoot off into
divergence after a value of 0.55 (refer to Table 4.9 and Figure 4.3).

4- Training NETtalk2 on simple Arabic children stories also did not work using BP, as
it did not converge (refer to Example A4 in Chapter 4). When the input window size
was increased to 9 input groups, convergence took place but generalization power
was weak (about 30%).

5- Other attempts were made on training NETtalk2 on a text of all consonant letters,
very good results appeared, but we cannot consider this as aneural net that can
pronounce Arabic text (refer to section 5.2.1).

6- Training NETtalk2 using multiple hidden layers. We tned:

e Two hidden layers of 40 units each: Performance was the same as with one
hidden layer of 80 units.

» Two hidden layers of 80 units each: 5% better generalization, but about the
same in absolute performance; because learning time increased.

o Three hidden layers of 80 units each: Worst than the previous one; bad
generalization performance and very low learning speed.

» Two hidden layers of 120 units each: 8% better generalization, but very
slow learning.

7- Using recurrent topology in training NETtalk2 (Jordan style) with Rprop as the
training algorithm. In this case, generalization power of NETtalk2 improved by 12%,

although the leaming speed stayed about the same and did not imporve,

-

-

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1o

Details on these experiments and others more, can be found in Chapters 4 and 5. These
expenments were also conducted using Rprop as & learning algorithm with NETtalk2,
which showed shightly better generalization results and leaming speed, as discussed in
the previous chapters.

After further investigation and analysis, we were able to conclude and identify the

following crucial problems, that we believe make a NETtalk-like artificial neural

network unable to pronounce Arabic text (for either it can not leam it, or generalization
tests fail if learning did happen):

1- A single Arabic letter can appear in a large number of different input patterns. The
net has to learn to identify this letter in whichever input pattemn it might appear in.
The following fact contributes more to making this a difficult process: A single
Arabic grapheme 1s, most of the time, pronounced by a consonant phoneme that
corresponds to it, combined with either of three vowels {a,u,1) and thus has at least
three phonological representations as output, which adds more to the training patterns
that must be presented to the net, and so requiring more training time and a larger
structure to be able to capture the different features and save them as configurations
in the hidden connections of the net.

2— A single input pattern can occur more than once in the same text, requiring a
different output for each occurrence. In this case, NETtalk2 cannot learn, but
diverges in an infinite number of loops. In many cases, very similar input patterns
require totally different output patterns. Here, NETtalk2 falls into a local minima and
takes a lot of learning time {and iterations) to climb out of the ravine. This problem

disappears as larger input window sizes are used during training.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

111

3-Some graphemes do not require a pronunciation in some cases, while they might in
others. This is a case where there is an input to NETtalk2, but it should not give any
output.

4-There exist cases where there is no input to the net, but an output is required, usually
a phoneme representing elongation in voicing. Such cases cannot be captured by
NETtalk2, thus leaving it to generate wrong output, corresponding to input paiterns

in which this case appears.

6.2 Future Work:

It has been shown in this study that a NETtalk-like neural network is unable to
pronounce Arabic text to a regardable amount of accuracy.

Starting from this, one might think of using other leaming algorithms than the one used

by NETtalk. A learning algorithm called "Resilient Backpropagation® (Rprop) was

presented earlier in the text, experiments with Rprop showed slightly better leaming
speed and generalization results than BP, but did not yet yield a NETtalk-like neural
network that can pronounce Arabic text successfully.

Another good solution 1s to combine an Expert System (ES) or a knowledge-based
system with the neural network. This can be implemented when we have explicit rules
that govern the pronunciation of certain graphemes according to some rules of syntax. In
this case, the ES can take a considerable amount of load off the neural net, by solving
pronunciation cases that are governed by these rules, cases that are still not clear can be
left for the neural network component to solve. This will reduce the number of pattems

and cases given to the neural network for training. This Expert System (or Front

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

112

Processor) component is a very good and easy solution to Janguages, whose most of its

grammar and pronunciation can be governed by rules of syntax.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

13

References

(Arras ef al, 1996) Arras, M. K. and Mohraz, K. 1996. FAST v2.2 - FORWISS Artificial

Neural Nerwork Simulation Toolbox, 15! edition. FORWISS, Erlangen, Germany.

(Barry, 1985) Barry, W. J. 1985. Automatic Identification of Regional Accent: Theory
and Practice. Cambridge Papers in Phonetics and Experimental Linguistics 4,

Cambndge. UK.

(Campbell, 1993) Campbell, N. A. 1993. Biology, 34 edition. The

Benjamin/Cummings Publishing Company, Inc., Canada.

(Church, 1983) Church, K. W. 1983. Phrase-Structure Parsing: A Method for Taking

Advantage of Allophonic Constraints. PhD Dissertation, Distibuted by IULC, USA.

(Fahlman, 1988) Fahlman, S. E. 1988. An Empirical Study of Learning Speed in Back-

propagation Networks. Technical Report, CMU-CS-88-162, Camgie-Mellon University.

(Fletcher, 1980) Fletcher, R. 1980, Practical Methods of Optimization, 15! edition. John

Wiley, NY.

(Grossberg et al, 1992) Grossberg, S. and Carpenter, G. 1992. A Massively Parallel
Architecture for a Self-Organizing Neural Pattern Recognition Machine. In: Lau, C.
(editor), Neural Networks - Theoritical Foundations and Analysis. IEEE Press, New

York.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

114

(Minton et al, 1990) Hinton, G. E. Lang, K. J. and Waibel, A. H. 1990. A Time-Delay
Neural Network Architecture for Isolated Word Recogmtion. Neural Nerworks, Vol.3.

Pergamon Press plc.

(Hoequist, 1987) Hoequist, C. Jr. 1987. Phonological Rules and Speech Recognition. yd

In: Laver, J. and Jack, M. A. (editors), European Conference on Speech Technology,

Vol.1, Edinburgh, pp. 480-483.

(Hopfield, 1982) Hopfield, J. J. 1982. Neural Networks and Physical Systems with
Emergent Collective Computational Abilities. Proc. Natl. Academic Society, Vol. 79,

pp. 2554-2558, USA.

(Jacobs, 1988) Jacobs, R. 1988. Increased Rates of Convergence Through Learning

Rate Adaptation. Neural Networks, Vol. 1.

(Kohonen, 1988) Kohonen, T. 1988. The *“Neural” Phonetic Typewnter. JEEE

Computer Magazine, Mar., pp. 11-12.

(Kohonen, 1990) Kohonen, T. 1990. The Self-Organizing Map. Proc. IEEE, 78 (9):

1464-1480.

(Lau, 1992) Lau, C. 1992, Neural Networks - Theoritical Foundutions and Analysis, 15!

edition. IEEE Press, New York.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1135

(McCullach et al, 1943) McCulloch, W. S. and Pitts, W. 1943, A Logical Caleulus of
the Ideas lmminent in Nervous Activity. Bulletin of Mathematical Biophysics, Vol. 3,

pp. 115-113.

(Minsky er al, 1969) Minsky, M. and Papert, S. 1969. Perceptrons, 15! edition. MIT

Press, Cambndge, MA.

(Nelson et al, 1993) Nelson, M. M. and Illingworth, W. T. 1993. 4 Practical Guide to

Neural Nets, 511 edition. Addison-Wesley Publishing Company, Inc., USA.

(Rajouani et al, 1987) Rajouani, A. Najim, M. Chiadmi, D. and Zyoute, M. 1987.
Synthesis-By-Rule of Arabic Language. In: Laver, J. and Jack, M. A. (editors),

European Conference on Speech Technology. Vol. 1, Edinbrugh, pp. 29-32.

(Reynolds er al, 1995) Reynolds, S. B. Mellichamp, J. M. and Smith, R. E. 1995. Box-

Jenkins Forecast Model Identification. A7 Expert,10 (6):15-28.

(Rich et al, 1991) Rich, E. and Knight, K. 1991. Artificial Intelligence, 2nd edition.

McGraw-Hill Inc. USA.

{Riedmiller et al, 1993) Riedmiller, M. and Braun, H. 1993. A Direct Adaptive Method
for Faster Backpropagation Leaming: The RPROP Algorithm. In: Ruspini, H. (editor),
Proceedings of the IEEE International Conference on Neural Networks (ICNN),pp. 586-

591, USA.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

116

(Riedmiller, 1994 a) Ricdmiller, M. 1994, Advanced Supervised Leaming in
Multilayer Perceptrons - From Backpropagation to Adaptive Learning Algorithms. /nt.

Journal of Computer Standards and Interfaces, Special Issue on Neural Networks, 16:

2065-278.

(Riedmiller, 1994 b) Riedmiller, M. 1994, Rprop - Description and Imlementation

Details. Technical Report, W-76128 Karisruhe FRG, University of Karlsruhe.

(Ritchie er al, 1986) Ritchie, G. D. Black, A. W. Pulman, S. J. and Russel, G.].1986.
The Edinburgh/Cambridge Morophological Analyser and Dictionary System

(Prototype: Version 2.2) User Manual. Cambridge University Computer Laboratory,

UK.

(Rosenblatt, 1959) Rosenblatt, R. 1959, Principles of Neurodynamics, 15! edition.

Spartan Books, New York.

(Rumelhart et al, 1986) Rumelhart, D. E. Hinton, G. E. and Williams, R. J. 1986.
Learmng Internal Representations by Error Propagation. In: Rumalehart, D. E. and
McClelland, J. L. (editors), Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, 15! edition, Vol.1: Foundations. MIT Press, Cambridge,

MA.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

117

(Sejnowski er af, 1987) Sejnowskt. T. J., and Rosenberg, C. R. 1987. NETtalk: A
Parallel Network that Leams to Read Aloud. Technical Report, JHU/EECS-86/01. The

John Hopkins University of Electrical Engineering and Computer Science.

(Sejmowski er al, 1992) Sejnowski, T. J., and Rosenberg, C. R. 1992, Parallel Networks
that Learn to Pronounce English Text. In: Lau, C. and Sanchez-Sinencio, E. {editors),
Artificial Neural Networks - Paradigms, Applications and Hardware Implementations.

IEEE Press, New York.

(Simpson, 1992) Simpson, P. K. 1992. Foundation of Neural Networks. In: Lau, C. and
Sanchez-Sinencio, E. (editors), Artificial Neural Networks - Paradigms, Applications

and Hardware Implementations. IEEE Press, New York.

(Vander er al, 1994) Vander, A.J. Sherman, J. H. and Luciano, D. S. 1994. Human

Physiology. The Mechanism Of Body Function, 6th. edition. McGraw-Hill, Inc., USA.

(Watrous er al, 1987) Watrous, R. L. Shastri, L. and Waibel, A. H. 1987. Leamed
Phonetic Discrimination Using Connectionist Networks. In: Laver, J. and Jack, M. A.

{(editors), European Conference on Speech Technology, Vol.1, Edinburgh, pp. 377-381.

{(Widrow et al, 1960) Widrow, B. and Hoff, M. E. 1960. Adaptive Switching Circuits.

IRE WESCON Conv. Record, Part 4, pp. 96-104.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

118

{Yuhas ¢f al, 1992) Yuhas, B. P. Goldstein, M. H. Jr. S¢jnowski, T. 1. and Jenkins, R.
E. 1992. Neural Network Models of Sensory Integration for Improved Vowel

Recognition. In: Lau, C. (editor), Neural Networsk, Theoritical Foundations and

Analvsis. 1IEEE Press, NY, pp. 311-320.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Appendix A

Set of Phonemes used by NETtalk2

1y

Decimal Phonological Example
Representation Representation

0 /?a/ 1

1 I/ 3
2 /N “$
3 ¥l .

4 fa:/ |

5 fba/ o
6 o/ o
7 b1/ -
8 /b/ o
9 /ta/ s
10 tu/ =

11 i/ o
12 v g=

13 /tha/ o
14 /thw/ "
15 /thi/ A5
16 /th/ ‘&
17 /3a/ z
18 3w/ i
19 13/ z
20 731 I
21 /hha/ id
22 /hhw/ i
23 /hhi/ Ke
24 /hh/ T
25 /xal ¢
26 /xu/ ’¢
27 /xi/ ¢
28 /x/ v
29 /da/ E
30 /dw/ ‘3
31 /di/ 3
32 /d/ E
33 /7a 3
34 12w/ 3
35 21/ 2
36 121 E
37 /ral J

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

38 ru/ 4
39 Jril B
40 It/ J
41 fza/)
42 fzu/ B
43 /il B
44 7/ J
45 /sa/ ‘i
46 Isu/ oy
47 /si/ ez
48 s/ (s
49 /$a/ ‘R
50 /Su/ (o
51 /8i/ -
52 /$/ O
533 /Sa/ e
54 /Su/ ‘e
55 /Si1/ L3
56 S/ ‘oo
57 /Da/ U
58 D/ ‘oo
59 /D R
60 D/ LB
6l {Ta/ $>
62 T/ ‘h
63 [Ti/ B
64 [T/ L
65 /2da/ P
66 /2dw/ 'L
67 /2dif B
68 {2d/ “h
69 Jial n
70 fiw/ id
71 1/)
72 /] ¢
73 Jual ‘£
74 ny "¢
75 /il ¢
76 W ¢
77 /fa/ “wa
78 /fuf a
79 i/ e
80 i ‘La
81 /qa/ ‘3
82 I '3
83 fqi/ L3

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

111

84 Iq/ 3
85 fka/ ‘o
86 fkw/ d
87 fki/ .4
88 /k/ C
89 Na/ J
90 N/ 'd
9] i/ A
92 1/ J
93 /ma/ ‘2
94 /mu/ ‘a
95 /mi/ 2
96 m/ 2
97 /na/ ‘U
93 my/ ‘0
99 /ni/ »
100 n/ ‘Y
101 /ha/ i
102 M/ “a
103 /hi/ 2
104 // o
105 fwa/ ‘3
106 Jw/ iy
107 I/ 4
108 Iwif 3
109 lja/ “
110 fiw/ X
1i1 fji/ S
112 fif s
113 /1 SPACE
114 1 COMMA
115 /un/ e
116 /n/ K
117 ?an/ 4
118 /bun/ S
119 /bin/ e
120 /ban/ ‘o
121 ftun/ 7S
122 ftin/ oD
123 ftan/ o
{24 /thun/ &
125 /thin/ o
126 /than/ g~
127 /3un/ ‘T
128 /3in/ &
129 3an/ ‘c
130 Mhun/ M

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

122

131 /hhin/ L
132 /hhan/ ‘T
133 fxun/ ‘z
134 Ixin/ £
135 /xan/ ‘T
136 fdun/ “
137 /din/ 2
{38 /dan/ &
139 /?2un/ ‘3
140 120/ .3
141 /2an/ '3
142 Jrun/ 4)
143 Jrin/ 8,
144 /ran/ P
145 fzun/ 3
146 /zind ,0
147 jzan/ 5
148 fsun/ o
149 /sin/ e
150 fsan/ ‘o
151 /$un/ s
152 /$in/ Ne:
153 /$an/ i
154 /Sun/ e
155 /Sin/ ua
156 /San/ ‘U
157 /Dun/ S
158 /Din/ U
159 /Dan/ "o
160 /Tun/ *a
16} /Tin/ o
162 /Tan/ B
163 /2>dun/ kb
164 /2din/ b
165 /?dan/ th
166 /;un/ 4
167 fn/ e
168 fgan/ k4
169 /pun/ 't
170 fuin/ £
171 Jpan/ ‘¢
172 /fun/ o
173 Min/ P
174 /fan/ =
175 Jqun/ ‘s
176 Jain/ K

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

123

178 fkun/ "y

179 /Kin/ 3

180 /kan/)

181 /lun/ ”

182 Min/ J

183 flan/)

184 /mun/ v,

185 /min/ :

186 /man/ “

187 mun/ ny

188 /min/ 0

189 /man/ 0

190 /hun/ ”_a

191 /hin/ -

192 /han/ ¢

193 fean/ »,

194 fwin/ 3

195 fwan/ f,

196 flun/ 2

197 fin/ 5

198 fjan/ .

199 e/ Dummy character, will not be spelled

200 /4 Repeats previous character.
Represents gemenation mark.

201 /E/ banana

202 /Er/ - bird

203 fa/ map

204 fa./ day, fade

205 fau/ now, out

206 b/ nib

207 fch/ chin

208 fd/ did

209 fe/ bed

210 fef beat, bleed

211 1t/ fast

212 g/ go

213 /h/ ahecad

214 hf tip

215 Al side

216 1/ job

217 k/ cook

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

124

222 fo:/ bone, know
223 fol saw, all

224 fo1/ coin

223 /p/ lip

226 r/ rat

227 Is/ source

228 /sh/ shy, mission, special
229 1t/ late

230 /th/ thin

231 /TH/ this

232 h/ rule, youth
233 v/ vivd

234 fwl we, away
235 Iyl yard, young, few
236 Iz/ ZOne, raise
237 fzh/ vision

238 /ks/ excess, axe
239 U/ pull, book, wood
240 Hyu/ union

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

126
Appendix B

Format of the 8-bit mono .wav Sound Files

In this appendix, we will talk about our personal expenience in trying to detect the

format of 8-bit mono .wav sound file (which we will refer to as “wave files” throughout

the text).

Wave files have different formats ranging from 8-bit mono to 16-bit stereo and PCM.
We were able to figure out the format of the 8-bit mono files, which is quiet good
enough for our study. This happened when we were trying to copy waves and paste them
in new files using the WaveStudio by Creative Technologies. It was found that when
trying to concatenate two wave files (16-bit stereo) into one file, if you open a PCM or
16-bit stereo wave file, select the part you want from it (or even all of it), copy it, and
paste it in a new file; it just won't work, it'll appear as sound distractions and the voice
will sound very weird.

Nevertheless, it worked with 8-Bit Mono files. So, we made the following small trick.
First, to find out how long the header of a wave file is and if it has a trailer or not. We
made a small PASCAL program that will read a wave file astext file (character by
character) as ASCII, finds the ordinal of every character (it's decimal ASCII number),
and then passes it to the Sound() function, it worked fine. So, it seems that the sound
frequencies (in integer decimal values) are transformed during recording of a sound into
their respective "decimal-to-ASCII" characters, and then written to the file after a

specific header, after all this forms a wave file.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

127

So, we know now that voice is represented as frequencies in character values (notice that
each character is one byte). So, how can we extract the header?

After different trials of the above-mentioed program on different ready-made wave files
(all of the same type, 8-bit mono), we noticed that they ali begin with the same wave
form. When we checked their wave files (opened them as text files), it was noticed that
they all share the same first 41 characters, which obviously is the header.

An important notice we would like to mention here, is that the spaces (7-8,17-
19,22,24,27-28,31-32,34,36 characters in the header) are not regular spaces (made by
the space bar), but are the ASCII code of the decimal number 0.

Now, the next 4 characters (bytes or ficlds) after the header are very important, they
represent the length (amount) of data in the file.

In our thesis we need to be able to concatenate many wave file into one large file, so
what length should we put in the length field (after the header). What we did next is a
program that will take each wave file, reads the length field of its header (ignore all the
rest of the header), transforms it to its decimal value, adds it to an accumulator, and

appends the data part of the file to a big “Master file (this will be the result wave file at

the end), and so on. At the end, the value in the accumulator will be the sum of lengths

of all the wave files, and then the usual single header will be given to this Master file,

followed by the ASCII value of the accumulator,

During this process we noticed that, the wave files that we deal with have roughly the
same size, they are all letters of the Arabic alphabet. If the NUMBER of the wave files is
more than 13, another field after the length field is used with the ASCII value of the

decimal number 1.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

128

If the number of wave files is greater than 23 then it is filled with the ASCII value of the
decimal 2, and so0 on.
The following PASCAL code represnts this idea. Notice that this code comes after the

header has been written to the Master wave file (MASTERWAVFILE) and the length

field has been specified and written:

if WAVE_COUNTER>13 then
if (WAVE_COUNTER mod 10)>0.3 then
write(MASTERWAVFILE chr(trunc(WAVE_COUNTER/10)));
else
write(MASTERWAVFILE, chr(trunc(WAVE_COUNTER/10)-1));, {Here it is in the
else previous phase}

write(MASTERWAVFILE, chr(0));

Where the trunc() function returns the integer part of a real number and the chr()
function returns the ASCII code of its argument. We call these blocks in the code

1]
Phases "

The same process happens for bigger wave files, i.e. the next 2 fields after this phase field
are treated much the same.
For more information, we advise that you refer to the documentation in any BC++

compiler.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

129
Appendix C
Code for BP and Rprop learning algorithms used

with NETtalk2

C.1 Error Backpropagation (BP):

/* First the header file. This is code of the header file BP.H which will be used nextin BP.C ¥/
#include <math. h>

#include <stdio.h>

#include <stdlib,h>

#include <string.h>

#include <time.h>

#define FALSE 0.
#define TRUE 1

typedef int Input_Unit_type:

typedef float Input_Threshold_type;

typedef Input_Unit_type [nput_Laver type;

typedef float First_Weight Layer_type;

typedef float Hidden_Layer_type;

typedef float Second_Weight_Layer_type;

typedef float Output_Laver_type;

typedef int Training_Vector_type;

typedef float Error_at_output_layer _elements_type;

typedef float Error_at_hidden_layer_elements_type;

typedef float Learning_Rate_type;

typedef float Minimum_Error_Wanted_type;

Input_Threshold_type In_Threshold; /*Bias unit in the input layer */

Input_Layer_type In_Laver[7]131]; /* The input layer %/

First_Weight Layer_type First_WL{218][80]; /* First weight layer, including bias unit
connection */

float DeltaFWL[218][80]; /* Will be used with the monentum term later */

Hidden_Layer_type HLayer{81]; /* Hidden layer of 80 PEs, and a bias unit */

Second_Weight_Layer type Sccond WL[81](8], /* Sccond weight layer, between hidden and
ountput */

float ! DeltaSWL{B1)[8]; /* Will be used with the monentum term later */

Cutput_Layer_type Out_Layer|8]; /% Qutput layer */

Training_Vector_type TVector(8]; * Required output values */

Error_at_output_layer_clements_type QOut_Error|8]; /* Error derivtive at the output layer

*/

Error_at_hidden_layer_clements_type Hidden_Error[80]; /* Error derivative at the hidden layer

*/
Learning Rate_type Ela;

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Minimum_Emor_Wanted_type Epsilon; /* Error tolerance */

FILE *BFilc.*TFilc.*Out_File:

char File_Namel15].0ut_File Name[15]:
int Error_Adjustment_Cycles:

int File_Pointer:

int File_Sizc:

float Momcntum;

/* now this is the code for BP.C */
finclude "bp.h"

* Following are the prototypes of the functions used, code and documentation is after the main program
»/

void Get_File_Sizefvoid),
void Read_Input_Characters(Input_Layer_type In_Layer{7}[31]}.
void Read Input(char File Namef15]);

void Initialize_Weights_and_Thresholds(Input_Threshold_type *In_Threshold,
First_Weight Layer type First_ WL[218][80],
Hidden Layer type HLayer{81],
Second_Weight_Layer_type Second_WL[81](8),float
DeltaSWL[81][8].float DeltaF WL[218](80]):

void Read_Training_Characters(Training_Vector_type TVector(8]),

void Read_Training_Input_to_Compare(char File Name[15]);

float First_Sum(int PE_NUM, Input_Threshold_type In_Threshold, Input_Layer_type
In_Laver{7){31],First_Weight_Layer_type First. WL[218}[80]);

float Second_Sum(int PE_NUM,Hidden_Layer_type HLayer[81),
Second_Weight_Laver type Second_WL[811[8]);

void Run_Neural_Network(Input_Threshold_type in_Threshold,
Input_Layer_type In_Layer{7]{31],
First_Weight Layer_type First_WL[218]([80].
Hidden_Layer_type HLayer(81],
Second_Weight_Layer_type Second_WL[81][8],
Output_Layer_type Out_Layer|8]);

void Compute_Error_al_Output_Layer(Training_Vector_type TVector[8],
Qutput_Layer_type Out_Layer[8],
Error_at_output_layer_elements_type Out_Error[8]);

void Compute_Error_at_Hidden_Layer(Hidden_Layer_type HLayer[81],
Sccond_Weight_Layer_type Second_WL[81][8],
Error_at_output_layer_elements_type Out_Error[8],
Error_st_hidden_layer clements_type Hidden_Error[80]),

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

13

void Adjust_Weights_Hidden_to_Output(Learning,_Rate_type Eta.
Hidden_Layer_type HLayer[81).
Error_at_output_layer_clements_type Oui_Error{3],
Second_ Weight_Layer_type Second_WL{81][8].
float DcltaSWL[B11[3]))-

void Adjust_Weights_Input_to_Hidden(Learning_Rate_type Eta.
lnput_Layer_type In_Layer[7][3 H.
First_Weight_Layer_type First_WL{218](80],
Input_Threshold_type In_Threshold.
float DeltaFWL]218][80]);

float abs_val(float i).
int Satisficd(Minimum_Error_Wanted_type Epsilon},

void Print_Weights(First_Weight Layer_type First_WL[21 8][80],
Second Weight Layer_type Sccond_WL[81][8] char File_Name[15]).

',-‘***t**#*t*****t#***#*#t#‘*##****‘** Main Pl'ogrﬂm FREEREERERERRNENF R RRER LR F R RS

void main{veid)
{
/* Specify the input file, momentunt and input file size */
Read_Input(File_Name).
printf("\nEnter Momentum; "),
scanf("%f" . &Momenturn).
Get_File_Size():
/* Initialize weights with random numbers and bias units with the value 1 */

lnilializc_Weights_and_ThreshoIds(&In_'I'hreshold,First_WL,}H..aycr.Second_WL,DcllaSWL,DellaFW
L),
E1a=0.35;
Epsilon=0.4:
/* The file pointer will point to the current binary number being rcad */
Fiie_Pointer=0;
/* Specify the file that contains training vectors ¥/
Read_Training_Input_to_Compare(File_Namc),
/* Initialize epochs counter */
Error_Adjustment_Cycles=0;
strepy(Qut_File_Name File_Name),
strcat{Out_Filc_Name,".out"},
do /* This is the start of an epoch */
{Error_Adjustment_Cycles++; /* Increment cpochs counter */
Out_File=fopcn(Oul_Filc_Namc,"w");
/* Now starts the BP alg. for one cpoch */
while ((!feof(TFile)) && (feof(BFile)))
{/* 1. Read values at the input window into the input layer */
Read_Input_Characters(In_Layer),
/* 2. Read desired output values into the training vector */
Read_Training_Characters(T Vector),
/* 3. Feedforward step from input layer to output layer */
Run_Neural_Network(In_Threshold,In_Layer,First_ WL,HLayer, Second_WL,Out_Layer),
/* 4. Computer crror derivative at the output layer */
Compule_Error_at_Outpul_Laycr(TVeclor,Oul__Laycr,Oul_Error};
/* 5. Computer error derivative at the hidden layer */

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

132

Compute_Error_at_Hidden_Layer(HLaycr,Second_WL.Out_Error.Hidden_Error).
/* 6. Backpropagale crror valuc and adjust weights at the second weight layer */
Adjust_Weights Hidden_to_Output(Eta,HLaver.Out_Error, Second WL.DeltaSWL).
/* 7. Backpropagate more and adjust weights at the first weight layer */
Adjust_Wcights_Input_to_Hidden(Eta.In_Layer.First_WL In_Threshold. DeltaFWL).
t

printf("\n end of cpoch %d and working, .\n" Error_Adjustment_Cycles).

rewind(BFile).rewind(TFile).File_Pointer=0;

} 1* End of onc epoch */

1* Stop only if the average squared error is less than Epsilon */

while (!Satisfied{Epsilon)):

printf("Number of error adjustment cycles over the files is: %", Error_Adjustment_Cycles).
{* Save the weights in a file to be frozen and hardwired while running the neural net
next time, for generalization */
Print_Weights(First WL, Second WL File_Name),
fclose(BFile);fclose(TFile), fclose(Out_File),

} f#tti##tt###**t#t‘**‘***tt*t End of maln() FRENEEPRERERNERER SRR R kS bR R R SR RR]

FEEREERRNIRDAERSEXASENERRE ST hRkk Functions code LS LA S LRI R bl P sl il bl sl lr)

void Read_Input(char File Name[15])
/* This function specifies the name of the input file */
{ char s[15];

int i,

printf{("Enter the Input Binary File name (but without extension): \n"),
gets(s). :
strepy(File_Name,s).
strcat(s,” in"),
if ((BFile=fopen(s,"r"))==NULL)

{puts("error opening file!.. Aborting, .").
exit{1);
}

}

void Get_File_Size()
/* This function gets the size of the binary input file, measured in number of digits */
{inti,

char ¢:

rewind(BFile),
i=0;
while (!feofl(BFilg))
{ fscanf(BFile,"%c" &c),
i
¥
rewind(BFile),
File_Size=i-1,

}

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

133

void Read_Input_Characters{Input_Layer_type In_Layer[7][31])
/* This function reads the 7 input groups into the input layer and slides the window 7 groups further */
{ charc:

int i j:

if (Filc_Pointeri=0) /* The sliding window is not al the start */
{ rewind(BFile).
=0,
while(i<(File_Pointer-186)) /* move pointer from the start of the file */
{fscanfiBFile, "%c".&c), /* to the current new position. */
-+
}
File_Pointer=File_Pointer-186:
}

for(i=0;i<=6;i++)
for(j=0;j<=30;j++)

{

fscanf(BFile."%<c".&c);

File Pointer++,

if (c=="0"
In_Layer(i][j}=0;

else

In_Laverfi]{i}=1;

}

}

void Read_Training_Input_to_Compare(char File_ Name[15])
* This function specifics the name of the file that contains the desired output values for training. */
{char s[15],

strepy(s,File_Name):
strcat(s,”.trn™).
if ((TFile=fopen(s,"r"})==NULL)
{ puts("Error opcning training file... Aborting!!*),
exit(1),
}
3

void Initialize_Weights_and_Thresholds(input_Threshold_type *In_Threshold,
First Weight Layer type First_WL{218][80),
Hidden Layer type HLayer[81],
Second Weight_Layer_type Second_WL[81](8],
float DeltaSWLS1]{8),float DeltaFWL[218][80])
/* This function initializes the connection weights to random numbers between -0.1 and 0.1 and sets the
bias units to value 1 and initializes the differences (Delias) to zcro */

fint 1,j;

time_t(;

In_Threshold=1; / Bias unit a1 the input layer ¥/
HLayer[0)=1; /* Bias unit at the hidden layer */

srand({unsigned) lime(&1)), /* initialize the random number generator to a random number depending
on the system time, */
{* Initialize weight connections at the first weight layer (between input and hidden layer */
for(i=(;i<=217,i++)
for(j=0j<=79,4++)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

134

if ((rand()%!10)>4)
First_WLIi]lj{=(rand()%10)/10.0;
clse
First_WLIi]lj]=-((rand()%10)/10.0};

/* Initialize weight connections at the sccond weight laver (between hidden and hidden laver */
for(i=0:i<=80i++)
for(j=0:j<=7j++)
if {({rand()%10)>5}
Second_WLIi|[j)=(rand()%10)/10.0;
clse
Second WL[i)[j]=-({rand{)%10)/10.0).

for{i=0;i<=217.i++)
for(j=0,j<=79,j++)
DeltaFWL[1][i]=0;
for(i=0;i<=80.++)
for(j=0;j<=7j+H)
DeltaSWLIi1[j]1=0;
}

void Read_Training_Characters(Training_Vector_type T Vector[8])
/* This function reads the desired output in the training vector */
{ inti,

for (i=0:i<=7:i++)
fscanf(TFile."%d". &T Vector(i]);
}

float First_Sum(int PE_NUM,Inpui_Threshold_type In_Threshold,
Input_Layer_type In_Layer[7}[31],
First_Weight_Layer_type First_WL[218][80])
/* This function is called from Run_Neural Network(), it computes the sum of all the conection
comming into a PE in the hidden layer multiplied by their weights */
{float temp.
int i,j,k;

temp=In_Threshold*First WL[O][PE_NUM-1}, /* first the connection from the */
k=0; . /* bias unit at the input layer */
/* then the other PE at the input layer */
for (1=0;i<=6.i++)
for (j=0,j<=30,j++)
{ k++:
temp=temp+(In_Layer[i][j]*First_WL{k][PE_NUM-1]};
3

return temp;

}

float Sccond_Sum(int PE_NUM, Hidden Layer_type HLayer[81],
Second_Weight_Layer_type Second_WL[81][8])
/* This function is called from Run_Neural_Network(), it computes the sum of all the conection
comming into a PE in the output layer multiplied by their weights */
{ MNoat temp;
im j;

temp=HLayer[0{*Second_WL[O}{PE_NUM]}; /* first from the bias unit in the hidden layer */
/* then the other PE at the hidden layer */
for (5=1;j<=80;j++)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

13%

temp=temp+(HLayer|j]*Sccond_WL[j][PE_NUM]).
returm temp:

;

void Run_Neural Network(Input_Threshold_tvpe In_Threshold,

Inpwt_Laver_type In_Layer{7][31}.

First_Weight_Layer_type First_WL[218][80].

Hidden_Laver_type HLayer[81].

Sccond_Weight_Layer_tvpe Second_WL|[81][8).

Output_Layer_type Out_Layer{8])
/* This function represents the feedforward process, writes the output of the net to an output file */
{in i,

/* 1. first step in the feedforward, from the input layer to the hidden layer */

for (i=1;i<=80;i++)
HLayer[i]=1/(}+exp(-First_Sum(i.In_Threshold.In_Layer.First_WL)));

/* 2. second step in the feedforward, from the hidden layer to the output layer */

for (i=0;i<=7;1++)
{ Out_Layer]i]=1/(1+exp(-Second_Sum(i,HLayer.Second_WL)});

fprintf{Out_File,"%f " Out_Layer[i]),
}
}

void Compute_Error_at_Output_Laver(Training_Vector_type TVector[8].
Qutput_Layer_type Out_Layer[8],
Error_at_output_layer_elements_type Out_Error([8])

/* This function computes the error derivative at the output layer */

{intj:

for (j=0;j<=7,j++)
Out_Error{j]=Out_Layer]j]*(1-Out_Layer[j]y*(TVector{j}-Out_Layer{j]);
¥

void Compute_Error_at_Hidden_Layer(Hidden_Layer_type HLayer{81],
Second_Weight_Layer_type Second_WL[81][8].
Error_at_output_layer_clements_type Qut_Error(8],
Error_at_hidden_layer_elements_type Hidden_Error[80])
/* This function computes the erro drivative al the hidden layer */
{intij;
floal temp;

for(j=1,j<=80;j++)
{ temp=0,
for(i=0;i<=7;1++);
temp=temp+Out_Errorfi]*Second WL[j][1);
Hidden_Error[j-11=HLayer{j]*(1-HLayer[j]}*temp;
}
}

void Adjust_Weights Hidden_to_Output(Learning_Rate_type Ela,
Hidden_Layer_type HLayer[81],
Error_at_output_layer_elements_type Out_Error(8],
Sccond_Weight_Layer_type Sccond_WL[81][8],
float DeltaSWL[81][8])

/* This function updatesimodifics the weights on the connections between the hidden layer and the

output tayer (i.c. in the sccond weight layer)
{inti}

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

11§

for(i=0:1<=80:i++)
for(j=thj<=7j++)
{DeltaSWLi]{j}=(Eta*Out_Error[jl*HLayeri]y+{Momentum*DeltaSWL[z) i)):
/* DelaSWL holds the previous valuc of the weight. and is used with the Momentum term. as
sCCN
in the above equation. ¥/
Second_WL|i](j]=Second WL{i](j]+DeltaSWLI[i[j].
}
}

void Adjust_Weights_Input_to_Hidden(Learning_Rate_type Eta,
Input_Layer_type In_Layer[7][31],
First_Weight_Layer_type First_WL[218](80],
Input_Threshold_type In_Threshold,

float DeltaFWL[218](80])
/* This function updates\modifies the weights on the connections between the input layer and the hidden
layer (i.c. in the first weight layer) */
{intijk; '
int temp([217].

for (=0,j<=79++)
{DeltaFWL[O]Li]=(Eta*Hidden_Error[i]*In_Thrcshold)-F(Momenmm‘DeltaFWL{O] 1)
/* DeltaSWL holds the previous value of the weight, and is used with the Momentum term, as seen
in the above equation. */
First_WL[0] |j]=First_WL[0]{j]+DeltaFWL[0][j];
}

k=0.
for(i=0;i<=6i++)
for(j=0;j<=30;j++)
{temp[k]=In_Laver(i]{i};

k++;
}

k=0,

for(i=1;i<=217.i++)

{for(j=0j<=79.3++)
{DeltaFWL{i]Ij]=(Ela*l-[idden_ErTor[j]“‘tcmp[k})+(Momenlum*DeltaFWL[i}[j]);
First_ WLi][j]=First_WLIij{jl+DeltaFWL[i][i];

1(-3-{»;

}
}

float sqr(float 1)
/* This function returns the squared value of its argument, to be used in the next function */

{ return (())*(1)):;

int Satisfied(Minimum_Error_Wanted_type Epsilon)

/* This function decides if the nct needs more training cpochs, depending on the average squared error,
which is half the sum of the squared difference between the actual output and the desired output over
all the training pair.

¥/

{ int Go_On,

float TVal,BVal Sum;

rewind(TFile),
fclose(Out_File),
Out_File=fopen{Out_File_Name,"r"),

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

Go_On=TRUE.Sum=t);

do

13%

{fscanfiTFile."%f ".&TVal).
fscanf{Out_File."%f ".&BVal).
Sum +=sqr(TVal-BVal), /* This is the equation of the average squared crror */

}

while (Ifcof(TFile) && !feof(Out_File)):

Sum /=2;

if{fSum>Segma_Error) Go_On=FALSE. /* If the error is still less than the required tolerance. we

need more training */

printf{"Error Index: %fin".Sum);
rewind(TFile).fclose{Out_File),

return Go_On;

}

{* TRUE=no further training required we can stop BP,
FALSE=need more training and weights adjustment */

void Print_Weights(First_Weight_Layer_type First_ WL[218][30],

Second_Weight_Layer_type Second_WL[81][8],char Fite_Nare[15])

/* This function writes the final weights after training into a file, to be used later as frozen weights in

the

net for generalization tests and regular running, */

{intij.

char Weight_File[15):

FILE *WFile;

strepv(Weight_File File Name);
streat(Weight File,".wgh");
WrFile=fopen{Weight_File,"w"},

for(i=0;i<=217:i++)
for(j=0;j<=79j++)

fprintf(WFile,"%f \n" First_ WLIi][i]):

for(i=0;i<=80;,i++)
for(j=0;j<=Ty++)

fprintf(WFile,"%f \n", Second_WL{i]i1);

fclose{ WFile);
}

C.1 Resilient Backpropagation (Rprop):

/* First the header file. This file contains definitions used in Rprop.C %/

#include <math.h>
#include <stdio.h>

#include <stdlib.h>
#inciude <string.h>

#include <time.h>

#idefine FALSE
#define TRUE
#defing cta_minus
#define cta_plus
#define Delta_max
#define Delta_min
#define Delta0

50.0;
0.0000006;
0.1,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

138

#define Firsi_Derivatived 0.1:

#define Min(ij) (<YY< 2GY.00):
#define Max(ij) ((<GY20)(GY<y2(D:aN).
typedef int Input_Unit_type:
typedef float Input_Threshold_type:
typedef [nput_Unit_type Input_Layer_type:
typedef float First_Weight_Laver_type:
typedef float Hidden_Layer_type:
typedef float Second_Weight Layer_type:
typedef float Output_Layer_type:
typedef int Training_Vector_type,
typedef float Error_partial_derivative;
typedef float Minimum_Ermor_Wanted_type:
typedef float First, WL_Delta_type;
typedef float Second_WL_Delta_type;
Input_Threshold_type In_Thresheld; /*Bias unit in the input layer */
Inpnt_Layer_type In_Layer[7](31]: /* The input layer */
First_Weight_Layer_type First_WL[218}{80]. /* First weight layer, including bias unit
connection */
First_WL_Delta_type FDelta[218]{80}. /* delafii[j}(t) and also delta[i](j}(t-1) at the
first
weight layer */
First_WL_Dela_tvpe FDeltaW([218)[80]; /* deltawl[i}{j](t) and also deltaw[i][j]I{t-1) will be
used later */
Hidden Layer type HLayer[81]; {/* Hidden layer of 80 PEs, and a bias unit */
Second_Weight_Laver_type Second_WL[B1][8]; /* Second weight layer, between hidden and
output */
Second WL _Delta_type SDclta[81]]8]; /* deltafi][j](1) and also delta[i][jl}{t-1) at the
first
weight layer */
Second_WL_Delta_type SDeltaW[81](8]; /* deltaw[i]{j}(t) and also deltaw]i][j](t-1} will
be
used later */
Output_Layer_tvpe Out_Layer[8]; /* Qutput layer */
Training_Vector_type TVector[8); /* Required cutput values */
Minimum_Error_Wanted type Epsilon; /* Error tolerance */

FILE *BFile *TFile,*Out_File;

int Num_of_epochs,ij;

int File_Pointer File_Sizc;

float Sum_dEdw_HLayer[218](80},Sum_dEdw_Out_Layer{81}{8]; /* Error derivatives that will be
summed over training pairs and used at the end of an cpoch to determine the direction on the error
surface */

/* now this is the code for Rprop.C */

#include "Rprop.h”

/* Following are the prototypes of the functions used, code and documentation is after the main program
*

void Get_File_Size(void),

void Read_Input_Characters(Input_Layer_type In_Layer[7]{31]);

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

139

void Read_Input(char File_Name[15]):

void Initialize_Wcights_and_Thresholds(Input_Threshold_type *In_Threshold,
First_Weight_Layer_type First_WL{43]{80].
Hidden_Laver_type HLayer|81].
Sccond_Weight Laver_type Second_WL[81](8].
First_WL_Delta_type FDelta|43](80],
First WL_Delta_type FDeltaW[43][80).
Second_WL_Delta_type SDeltai81][8).
Second_WL_Delta_type SDcitaW([81][8]).

void Read_Training_Characters(Training_Vector_type TVector{8]).

void Read _Training_Input_to_Compare(char File_Name[15]);

float First_Sum(int PE_NUM,Input_Threshold_type In_Threshold,Input_Layer_type
In_Layer[7][31),First_Weight_Layer_type First_WL[218](80]);

float Second_Sum(int PE_NUM,Hidden_Layer_type HLayer[81],
Scoond_Weight_Layer_type Second_WL[81][8]);

void Run_Neural Network(Input_Threshold_type In_Threshold,
Input_Layer_type In_Layer(7)(31],
First_Weight_Layer_type First_ WL[218][80],
Hidden_Layer type HLayer{81].
Second_Weight_Layer_type Second WL[81}[8],
Qutput_Layer_type Out_Layer[8]),

void Compute_Error_Derivative(Qutput_Layer_type Out_Layer[8], Training_Vector_type TVector|8],
Hidden_Layer_typc HLayer{81],
Second Weight Layer_type Second_WL[81][8],
Input_Threshold_type In_Threshold,
Input_Layer_type In_Layer[7}[31],
float Sum_dEdw_HLayer{218][80],
float Sum_dEdw_Out_Laver[81][8]).

int Sign(float i}

void Adjust_Weights(First_Weight_Layer_type First_WL[218][80},
Second_Weight_Layer type Second_WL[81}{8],

First WL._Delta_type FDel1a[218][80],
First WL_Deita_type FDcltaW[218][80],
Second WL _Delta_type SDelta[81](8],
Second WL _Delta_type SDeltaW([81][8],
fioat Sum_dEdw HLayer{218]{80],
float Sum_dEdw_Qut_Layer]81|(8]);

float abs_vai(float i),
int Satisficd(Minimum_Error_Wanted_type Epsilon);

void Print_Weights(First_Weight_Layer_typc First_ WL{218](80],
Second Weight_Layer_type Second_WL[81}[8]),char File_Name|15]);

ft*t#**mﬂ‘t‘ttt*t*##***t**##*tttt*‘# Mﬂl]’l Program ERRST IR 22 Rl 2 E i flEL Lol

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

140

void main(void)
{
/* Specify the input file, momentum and input file size ¥/
Read_Input(File_Namc).
printf{"\nEnter Momentum:).
scanf{"%{".&Momentum).
Get_File_Size():
/* Tnitialize weights with random numbers and bias units with the value 1 %/

Initialize_Wei ghts_and_Thresholds(&In_Threshold First_ WL. HLayer.Second_WL.FDelta, FDeltaW.

SDelta, SDeltaW);
Eta=0.35;
Epsilon=0.4;
/* The file pointer will point to the current binary number being read */
File_Pointer=0.
/* Specify the file that contains training vectors */
Read Training_Input_to_Compare(File_Name),
/* Initialize ¢pochs counter */
Error_Adjustment_Cycles=0;
strepy(Out_File_Name File_Name),
strcat(Qut_File_Name,".out");
do /* This is the start of an epoch ¥/
{Error_Adjustment_Cycles++; /* Increment epochs counter */
Out_File=fopen(Qut_File_Name,"w"),
/* Now starts the BP alg. for one epoch */
while ((!feof(TFile)) && (lfeof(BFile)))
{/* 1. Read values at the input window into the input layer */
Read_Input Characters(In_Layer);
/* 2. Read desired output values into the training vector */
Read_Training_Characters(T Vector),
/* 3. Feedforward step from input layer to output layer */
Run_Neural_Network(In_Thrmhold,ln_Layer,First_WL,}H..ayer,Sccond_WL,Oul_Layer):
/* 4. Computer error derivative at the output layer */
Compute_Error_Derivative(Out_Layer, TVector,HLaycr,Second_WL,In_Threshold,
In_Layer,Sum_dEdw_HlLayer,Sum_dEdw_Out_Layer),
}
/* 5. Adjust weights after stepping thru the whole training set */
Adjust_Weights(First_ WL, Second_WL FDelta,FDeltaW,SDelta,SDeltaW, Sum_dEdw_HLaver,
Sum_dEdw_Qut_Layer),
printf("\n end of epoch %d and working...\n",Error_Adjusiment_Cycles).
rewind(BFile);rewind(TFile);File_Pointer=0;
} /* End of onc cpoch */
/* Stop only if the average squared error is less than Epsilon */
while (!Satisfied{Epsilon)),

printf("Number of error adjustment cycles over the files is; %" Error_Adjustment_Cycles),
/* Save the weights in a file to be frozen and hardwired while running the neural net

next time, for generalization */
Print_Weights(First WL,Second_WL,File_Name),
fclose(BFile): fclose{ TFile);fclose(Out_File),

} '{*ttt#*#t*###*#t##t#t***#*## End Of mln() FYTIET eI 22 T2 12 2222 E2 22221 2L et Loy

;#*t*t#t#t**#***#**t##*t*#*t‘t‘t# Functions Codc EXT IR 22 LS R L2 L2ttt L At Lt L L)

void Read_Input(char File_Name[15])
/* This function specifics the name of the input file */
{ chars[15];

int i,

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

141

printf("Enter the lnput Binary File name (but without ¢xtension): \n").
gets(s).
strepyv(File_Name.s).
streat(s.".in").
if ((BFile=fopen(s."t™)==NULL)
{ puts("crror opening filel..Aborting...").
exit(1):
}
1

void Get_File_Size()
/* This function gets the size of the binary input file, measured in number of digits */
{int1

charc;

rewind(BFile);
i=0;
while (!feof{BFile))
{ fscanf(BFile "%c”.&c).
1++,
}
rewind(BFile)
File_Size=i-1,

}

void Read_Input_Characters(Input_Layer_type In_Layer{7]j31]}
/* This function reads the 7 input groups into the input layer and slides the window 7 groups further */
{ charc:

intij,

if (File_Pointer!=0) /* The sliding window is not at the start */
{ rewind(BFile).

i=0;
while(i<(File_Pointer-186)) /* move pointer from the start of the file %/
{fscanf(BFile."%c".&c); /* to the current new position. */
i+
H
File_Pointer=File_Pointcr-186:
}

for(i=0;i<=6;i++)
for(j=0:j<=30j++)

{

fscanf(BFile,"%c".&c),

File_Peinter++.

if (c=="0"
In_Layer{if[j}=0,

clsc
In_Layer[i][j]=1;

¥

}

void Read_Training_lnput_to_Compare(char File_Name]|15])
/* This function specifics the name of the file that contains the desired output values for training, */
{char sf15];

strepy(s,File_Name),
strcat(s,”.trn"),

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

141

if ((TFile=fopen(s."r"))==NULL)
{ puts(*Error opening training file.. . Aborting!t™).
exit(1):
}
}

void Initialize_Weights_and_Thresholds(Input_Threshold_type *In_Threshold,

First_Weight_Layer_type First_WL[43][80].
Hidden_Layer_type HLayer[81].

Second_Weight_Layer_type Second_WL{81][8].
First W1L._Dclta_type FDelta[43][80],
First_WL_Delta_type FDeltaW[43][80],
Second_WL _Delta_type SDelta[81](8],
Second_WL_Delta_type SDeltaW([81][8])

/* This function initializes the connection weights to random numbers between -0.1 and 0.1 */

#* and sets the bias units to value 1 and initializes the differences (Deltas) to zero */

{int ij;

time tt

In_Threshold=1. / Bias unit at the input laycr */
HLayer[0}=1. /* Bias unit at the hidden layer */
srand({unsigned) time(&1)), /* initialize the random number generator to a random number */
/* depending on the system time. */
/* Initialize weight connections at the first weight layer (between input and
hidden layer */
for(i=0;1<=217;i++)
for(j=0:j<=79:j++)
if {{rand()%10)>4)
First_WL[i}{j]=(rand()%10)/10.0:
clse
First WLIi][j]=-((rand(}%10)/10.0);

/* Initialize weight connections at the second weight layer (between hidden and
hidden laver */
for(i=0;i<=80;1++)
for(j=0;j<="7;j++)
if ({rand()%10)>3)
Second_WL[i](j]=(rard()%10)/10.0;
else
Second_WL[i][j]=-((rand()%10)/10.0),
{* Initialize Deltas */
for(i=0;i<=217,i++)
for(j=0,j<=79;j++)
{ FDelta[i}[j}=Del1a0;
FDeltaW(i][j}=DecltaC;
}
for(i=0;i<=80,1++)
for(j=0,j<=Ty++)
{ SDeltafi]{j]=Delta0),
SDeltaWiji][j]=Peltal,
}
}

void Read_Training_Characters(Training_Vector_type TVector[8])
/* This function reads the desired output in the training vector */
{ intt

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

14}

for (i=0:i<=T.i++)
fscanf{TFile,"%d". & T Vectorlil).
}

float First_Sum(int PE_NUM.Input_Threshold_type In_Threshold,
Input_Layer_type In_Layer{7](31],
First_Weight_Layer_type First WL[218}[80])
/* This function is called from Run_Neural_Network(), it computes the sum of all the conection
comming into a PE in the hidden layer multiplied by their weights *
{float temp:
int 1j.k;

temp=In_Threshold*First_ WL[O][PE_NUM-1], /* first the connection from the */
k=0, /* bias unit at the input layer */
/* then the other PE at the input layer */
for (i=0;i<=6.1++)
for (i=0;j<=30;+4)
{ k++
temp=tempHIn_Layerfi][j]*First_ WLIK][PE_NUM-1]),

}
retum temp,
}

float Sccond_Sum(int PE_NUM, Hidden_Layer_type HLayer[81],
Second_Weight_Layer type Second_WL[81][8])
/* This function is called from Run_Neural_Network(), it computes the sum of all the conection
comming into a PE in the output layer multiplied by their weights ¥/
{ float temp:.
int j;

temp=HLayer[0]*Sccond_WL[0][PE_NUM]; /* first from the bias unit in the hidden layer */
/* then the other PE at the hidden layer */
for (j=1;j<=80;j++)
temp=temp+(HLayer{j]*Second_WL[j]{PE_NUM]),
return temps:

}

void Run_Neural_Network(Input_Threshold_type In_Threshold,

Input_Layer_type In_Layer[7][31],

First_Weight Layer type First_ WL[218]{80],

Hidden Layer_type HLaver[R1],

Second_Weight_Layer_type Second_WL[81]{8],

Output_Layer_type Out_Layer(8])
/* This function represents the feedforward process, writes the output of the net to an output file */
{iny;

/* 1. first step in the feedforward, from the input layer to the hidden layer */
for (i=1;1<=80;i++)
HLayeri]=1/(1+exp(-First_Sum(i,In_Threshold,In_Layer,First_WL))),
/* 2. second step in the feedforward, from the hidden layer to the output layer ¥/
for (i=0;i<=7,i++)
{ Out_Layer[i]=1/(1+exp(-Second_Sum(i,HLayer,Second_WL))),
fprind(Qut_File,"%f ",Out_Layer{i]};
}

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

144

}

void Compute_Error_Dcrivative(Output_Layer_type Out_Layer|8].
Training_Vector_type TVector|8].
Hidkden_Layer_type HLayer{81],
Second_Weight_Layer_type Sccond_WL(81]{8].
Input_Threshold_type In_Threshold.
Input_Layer_type In_Layer[7][31].
float Sum_dEdw_HLayer[218](80].
float Sum_dEdw_Out_Layer{81](8]}
/* This function sums up the values of the error derivatives at the PES in the output laver
and the hidden layer over training pairs */
{intijk;
float temp.temp2.temp3|8];
Input_Layer_type In_Layer_flat[31]:

/* First, compute the average squared error derivative at the output layer. and add it to
the accumulator. Eventually, the value in the accumulator is the sum over all the training pairs */
for(i=0.i<=7.i++)
temp3[i}=Out_Layer{i]*(1-Out_Layer(i])*(Out_Layer[i]-TVector{i]).
for(i=0,i<=80.1++)
for(j=0;j<=7:j++)
Sum_dEdw_Out_Layer[i][j] +=temp3[j]*HLayer(i];

/* Now we will make a flat temporary copy of In_Layer for reasons to come ahead®/
In_Layer_ flat[0]=In_Threshold:
k=1,
for(i=0;i<=6:1++)
for(5=0;j<=30j++)
{In_Layer_flat[k}=In_Layer[il[j):
k++;

}

/* Now, compute the error derivative at the hidden layer PEs, and add it to
the accumulator. Eventually. the value in the accumulator is the sum over all the training pairs */
for(i=0;i<=217;i++)
for(=1;j<=80;j++)
{temp=0.
for(k=0:k<=7 k++)
temp +=temp3[k]*Second_WL[j](k];
Sum_dEdw_HLayer[i]{j-1} +=HLayer|j]*(1-HLayer[j])*temp*In_Layer_flat[i],
}
}

int Sign(float i)
/* This function returns 1 if its argument is +ve, -1 if it is -ve and 0 otherwise */
{ return((1)>071:((i)<07-1:0));}

void Adjust_Weights(First Weight_Layer_type First_WL[218}[80},

Second_Weight_Layer_type Second_WL[81]{8],

First_ WL Delta_type FDelta{218][80],

First WL_Delta_typc FDeltaW|218]{80],

Second_ WL _Delta_type SDelta{81][8],

Second_WL_Delta_type SDeltaW|81]]8],

float Sum_dEdw_HLayer[218][80],

float Sum_dEdw_Oui_Layer[81}{8])
/* This function will compute the weights updates, depending on the direction of the gradient on the
crror surface */

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

HE

{inti]
Moat temp] .temp?2.direction;

/* For weights in the sccond weight layer, between the hidden layer and the output layer */
for(i=0.i<=80:1++)
for(j=0;j<=T,j++)
{dircction=SDeltaW[i] [j]*Sum_dEdw_Owm_Layeri][j):
if {dircction<(})
{ templ=SDeltafi](j]*eta_plus:
temp2=Delta_max.
SDelta[i][jl=Min(templ.temp2}.
SDeltaW[i](j]=-Sign(Sum_dEdw_Out_Layer[i}[j})*SDeltalij{j}.
}
else if (direction>0)
{ SDeltaW[i][j]=0;
templ=SDeltali][j]*¢ta_minus,
temp2=Delta_min;,
SDelta[i}(jj=Max(templ,temp2),
}
elsc
SDeltaW[i][j]=-Sign(Sum_dEdw_Out_Layer{i][j])* SDeltafi](j}.
Second_WL[il{j] +=SDeltaWTi][j}.
Sum_dEdw_Out_Layer[i][j}=0;
}

/* For weights in the first weight layer, between the input layer and the hidden layer */
for(i=0;i<=42;i++)
for(j=0,j<=79j++)
{direction=FDeltaW[i][j]*Sum_dEdw_HLayer(t][j].
if (direction<0)
{ templ=FDeltali][j] *cta_plus;,
temp2=Delta_max;
FDelta[i][j]=Min(templ ,temp2),
FDeltaW(i]}j]=-Sign(Sum_dEdw_HLayer(i}(j])*FDelta[i](j];
}
else if (direction>0)
{ FDeltaW[i][j]=0;
templ1=FDelal[i][j]*cta_minus;
temp2=Delta_min;
FDelta|i][ji=Max(templ,temp2),
¥

clse
FDcltaWii][j]=-Sign(Sum_dEdw_I—]].,aycr|i][j])*FDelta[i][j];
First_WL[i]{j] +=FDeltaW/[i][l,
Sum_dEdw_HLayer[i][3]=0,

float sgr(float i}
/* This function returns the squared valuc of its argument, to be used in the next function */

. { return ((1)*(1));}

int Satisfied(Minimum_Error_Wanted_type Epsilon)

/* This function decides if the net needs more training epochs, depending on the
average squared error, which is half the sum of the squared difference between the
actual output and the desired output over all the training pair */

{ int Go_On;

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

146

float TVal.BVal.Sum:;

rewind(TFile):
felose{Out_File).
Out_File=fopen{Out_File_Name."r").
Go_On=TRUE.Sum={};
do
{fscanf{TFile,"%f ".&TVal),
fscanf{lOut_File,"%f ".&BVal);
Sum +=sqr(TVal-BVal). /* This is the cquation of the average squared crror */
!
while (Mfeof{TFile) && feof(Out_File)):
Sum /=2;
if{Sum>Segma_Error) Go_On=FALSE:; /* If th error is still less than the required
printf{"Error Index: %f\n",Sum); /* tolerance, we need more training */
rewind(TFile).fclose(Out_File);
return Go_On; /* TRUE=no further training required we can stop Rprop.
FALSE=need more training and weights adjustment */
}

void Print_Weights(First_ Weight_Layer_type First_WL[218}{80],
Second_Weight Layer_type Second_WL[81][8],char File_Name[15])
/* This function writes the final weights after training into a file, to be used
later as frozen weights in the net for generalization tests and regular running */
{ intij:
char Weight_File[15].
FILE *WFile;

strepy(Weight _File File_Name),
strcat{Weight_File,".wgh");
WFile=fopen(Weight_File,"w");
for(i=0;1<=217;i++)
for(j=0:j<=79j++)
fprintf(WFile,"%f \n" First_WL{i](j}):
for{i=0;i<=80.i++)
for(j=0,j<=7j++)
fprintf{WFile,"%f \n",Second_WLI[i]{i]),
fclose(WFile),
}

Note: This code is written in ANSI C, to be run on an IBM RISC 6000 machine, using
AIX OS.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

147
Appendix D

Training and Generalization Sets used with NETtalk2

D.1 English Text Sets:

D.1.1 Set of the 1000 most commonly used English words, used by Rosenberg and
Sejnowski:
The following list was taken from The Internet site:

http://herens.idiap.ch/~miguel/dbases/nettalk/nettalk info

Copyright (C) 1988 by Terrence J. Sejnowski. Permission is hereby given to use the
included data for non-commercial research purposes. Contact The Johns Hopkins
University, Cognitive Science Center, Baltimore MD, USA for information on
commercial use.

MAINTAINER: neural-bench@cs.cmu.edu

Note (by Scott Fahlman):

The Nettalk paper by Sejnowski and Rosenberg reports a number of experiments in
which the net was trained on "a list of the 1000 most common English words”. Several
people have asked for this list so that they can attempt to duplicate those experiments.
Unfortunately, the original list was not saved. However, Terry Sejnowski states that this
list was created by scanning the list of most common words in the Brown corpus and
selecting the first 1000 of these that also appear in the nettalk dictionary. He also

provided me with a portion of this list.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

143

After a bit of hacking with editor macros and Lisp, 1 have prepared the following list of
words that should closely approximate the 1000-word list used by Sejnowski and

Rosenberg.

(THE OF AND TOIN THAT IS WAS HE FOR IT WITH AS HIS ON BE AT BY I THIS HAD NOT
ARE BUT FROM OR HAVE AN THEY WHICH ONE YOU WERE HER ALL SHE THERE WOULD
THEIR WE HIM BEEN HAS WHEN WHO WILL MORE NO IF QUT SO SAID WHAT UP ITS
ABOUT INTO THAN THEM CAN ONLY OTHER NEW SOME TIME COULD THESE TWO MAY
THEN DO FIRST ANY MY NOW SUCH LIKE OUR OVER MAN ME EVEN MOST MADE AFTER
ALSO DID MANY BEFORE MUST THRQUGH BACK WHERE MUCH YOUR WAY WELL DOWN
SHOULD BECAUSE EACH JUST THOSE PEOPLE HOW TOO LITTLE STATE GOOD VERY
MAKE WORLD STILL OWN SEE MEN WORK LONG HERE GET BOTH BETWEEN LIFE BEING
UNDER NEVER SAME DAY ANOTHER KNOW WHILE LAST MIGHT US GREAT OLD YEAR
OFF COME SINCE GO AGAINST CAME RIGHT TAKE THREE HIMSELF FEW HOUSE USE
DURING WITHOUT AGAIN PLACE AMERICAN ARQUND HOWEVER HOME SMALL FOUND
THOUGHT WENT SAY PART ONCE HIGH GENERAL UPON SCHOOL EVERY DOES GOT
UNITED LEFT NUMBER COURSE WAR UNTIL ALWAYS SOMETHING FACT THOUGH
WATER LESS PUBLIC PUT THINK ALMOST HAND ENOUGH FAR TOOK HEAD YET
GOVERNMENT SYSTEM SET BETTER TOLD NOTHING NIGHT END WHY FIND LOOK
GOING PQOINT KNEW NEXT CITY BUSINESS GIVE GROUP YOUNG LET ROOM PRESIDENT
SIDE SOCIAL SEVERAL GIVEN PRESENT ORDER NATIONAL RATHER POSSIBLE SECOND
FACE PER AMONG FORM OFTEN EARLY WHITE CASE LARGE BECOME NEED BIG FOUR
WITHIN FELT ALONG CHILDREN SAW BEST CHURCH EVER LEAST POWER THING LIGHT
FAMILY INTEREST WANT MIND COUNTRY AREA DONE OPEN GOD SERVICE CERTAIN
KIND PROBLEM THUS DOOR HELP SENSE WHOLE MATTER PERHAPS ITSELF TIMES
HUMAN LAW LINE ABOVE NAME EXAMPLE ACTION COMPANY LOCAL SHOW WHETHER
FIVE HISTORY GAVE EITHER TODAY FEET ACT ACROSS TAKEN PAST QUITE HAVING
SEEN DEATH BODY EXPERIENCE REALLY HALF WEEK WORD FIELD CAR ALREADY
THEMSELVES INFORMATION TELL TOGETHER SHALL COLLEGE PERIOD MONEY SURE
HELD KEEF PROBABLY REAL FREE CANNOT MISS POLITICAL QUESTION AIR OFFICE
BROUGHT WHOSE SPECIAL HEARD MAJOR AGO MOMENT STUDY FEDERAL KNOWN
AVAILABLE STREET RESULT ECONOMIC BOY REASON POSITION CHANGE SOUTH
BOARD INDIVIDUAL JOB SQCIETY WEST CLOSE TURN LOVE TRUE COMMUNITY FULL
FORCE COURT SEEM COST AM WIFE FUTURE AGE VOICE CENTER WOMAN COMMON
CONTROL NECESSARY POLICY FRONT SIX GIRL CLEAR FURTHER LAND ABLE FEEL
PARTY MUSIC PROVIDE MOTHER UNIVERSITY EDUCATION EFFECT LEVEL CHILD SHORT
RUN STOOD TOWN MILITARY MORNING TOTAL QUTSIDE FIGURE RATE ART CENTURY

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

149

CLASS NORTH LEAVE THEREFORE PLAN TOP SOUND EVIDENCE MILLION BLACK HARD
STRONG VARIOUS BELIEVE PLAY TYPE SURFACE VALUE SOON MEAN NEAR MODERN
TABLE PEACE RED ROAD TAX SITUATION PERSONAL PROCESS ALONE GONE NOR IDEA
WOMEN ENGLISH INCREASE LIVING LONGER BOOK CUT FINALLY NATURE PRIVATE
SECRETARY THIRD SECTION CALL FIRE KEPT GROUND VIEW DARK PRESSURE BASIS
SPACE FATHER EAST SPIRIT UNION EXCEPT COMPLETE WROTE RETURN SUPPORT
ATTENTION LATE PARTICULAR RECENT HOPE LIVE ELSE BROWN BEYOND PERSON
COMING ‘DEAD INSIDE REPORT LOW STAGE MATERIAL INSTEAD READ HEART LOST
DATA AMOUNT PAY SINGLE COLD MOVE HUNDRED RESEARCH BASIC INDUSTRY TRIED
HOLD COMMITTEE ISLAND EQUIPMENT DEFENSE ACTUALLY SON SHOWN TEN RIVER
RELIGIOUS SORT CENTRAL DOING REST INDEED CARE PICTURE DIFFICULT SIMPLE FINE
SUBJECT RANGE WALL MEETING FLOOR BRING FOREIGN CENT PAPER SIMILAR FINAL
NATURAL PROPERTY COUNTY MARKET POLICE GROWTH INTERNATIONAL START TALK
WRITTEN STORY HEAR ANSWER NEEDS HALL ISSUE CONGRESS WORKING LIKELY
EARTH SAT PURPOSE LABOR STAND MEET DIFFERENCE HAIR PRODUCTION FOOD FALL
STOCK WHOM SENT LETTER PAID CLUB KNOWLEDGE HOUR YES CHRISTIAN SQUARE
READY BLUE BILL TRADE INDUSTRIAL DEAL BAD MORAL DUE ADDITION METHOD
NEITHER THROUGHOUT COLOR TRY ANYONE READING LAY NATION FRENCH
REMEMBER SIZE PHYSICAL UNDERSTAND RECORD WESTERN MEMBER SOUTHERN
NORMAL STRENGTH POPULATION VOLUME DISTRICT TEMPERATURE TROUBLE
SUMMER MAYBE RAN TRIAL LIST FRIEND EVENING LITERATURE LED MET ARMY
ASSOCIATION INFLUENCE CHANCE HUSBAND STEP FORMER SCIENCE STUDENT CAUSE
MONTH HOT AVERAGE SERIES AID DIRECT WRONG LEAD PIECE MYSELF THEORY
SOVIET ASK FREEDOM BEAUTIFUL MEANING FEAR NOTE LOT SPRING CONSIDER BED
PRESS ORGANIZATION TRUTH HOTEL EASY WIDE DEGREE HERSELF RESPECT FARM
PLANT MANNER REACTION APPROACH RUNNING LOWER GAME FEED COUPLE CHARGE
EYE DAILY PERFORMANCE BLOOD RADIO STOP TECHNICAL PROGRESS ADDITIONAL
MARCH MAIN CHIEF WINDOW DECISION RELIGION TEST IMAGE CHARACTER MIDDLE
APPEAR BRITISH RESPONSIBILITY GUN LEARNED HORSE ACCOUNT WRITING SERIQUS
LENGTH GREEN ACTIVITY FISCAL CORNER FORWARD HIT AUDIENCE SPECIFIC
NUCLEAR DOUBT STRAIGHT LATTER QUALITY JUSTICE DESIGN PLANE SEVEN STAY
POOR BORN CHOICE OPERATION PATTERN STAFF FUNCTION INCLUDE WHATEVER SUN
SHOT FAITH POOL WISH LACK SPEAK HEAVY MASS HOSPITAL BALL STANDARD AHEAD
VISIT DEEP LANGUAGE FIRM PRINCIPLE CORPS INCOME DEMOCRATIC NONE EXPECT
DISTANCE IMPORTANCE PRICE ANALYSIS SERVE PRETTY ATTITUDE CONTINUE
DETERMINE EXISTENCE DIVISION STRESS HARDLY WRITE SCENE REACH LIMITED
APPLIED AFTERNOON DRIVE PROFESSIONAL STATION HEALTH ATTACK SEASON SPENT
EIGHT ROLE CURRENT NEGRO ORIGINAL BUILT DATE MOUTH RACE UNIT TEETH
MACHINE COUNCIL COMMISSION NEWS SUPPLY RISE DEMAND UNLESS BIT SUNDAY

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

150

OFFICER MEANT WALK DOCTOR ACTUAL CLAY GLASS POET JAZZ CAUGHT HAPPY
FIGHT POPULAR CONCERN SHARE STYLE BRIDGE GAS CLAIM FOLLOW THOUSAND
SUPPOSE HEAT STATUS CHRIST CATTLE RADIATION USUAL FILM OPINION PRIMARY
BEHAVIOR CONFERENCE SEA PROPER ATTEMPT MARRIAGE SIR HELL CONSTRUCTION
WORTH PRACTICE SIGN SOURCE WAIT ARM PARK TRADITION REMAIN PROJECT
AUTHORITY LORD ANNUAL JUNE OIL OBVIOUS THIN FELL PRINCIPAL JACK CONDITION
DINNER BASE STRUCTURE MEASURE WEIGHT OBJECTIVE CIVIL COMPLEX
MANAGEMENT MIKE EQUAL NOTED KITCHEN DANCE BALANCE CORPORATION PASS
FAMOUS REGARD DEVELOP FAILURE CLOTHES COVER BREAK CARRY MOREOVER KEY
KING ADD ACTIVE CHECK BOTTOM PAIN MANAGER ENEMY POETRY TOUCH FIXED
POSSIBILITY SPOKE BRIGHT BATTLE PRODUCT BUILD SIGHT ROSE LOSS PREVIOUS
FINANCIAL PHILOSOPHY REQUIRE SCIENTIFIC SHAPE MARKED MUSICAL VARIETY
GERMAN CAPITAL CAPTAIN CONCEPT DISTRIBUTION IMPOSSIBLE LEARN BEGIN AWARE
BROAD STRANGE SEX POST CATHOLIC REGULAR OPENING WINTER CAPACITY SHIP
SPREAD HOUSES PREVENT MARK SPEED YESTERDAY TEAM BANK GOVERNOR
INSTANCE TRAIN YQUTH PRODUCE FRESH CRISIS BAR DRINK IMMEDIATE ROUND
WATCH LIVES ESSENTIAL TRIP NINE EVENT APARTMENT CAMPAIGN FILE OPPOSITE
NECK INDEX TWENTY OFFER GRAY LADY FULLY INDICATE SESSION RUSSIAN
PROVIDENCE STUDIED SEPARATE ATMOSPHERE PROCEDURE TERM EXPRESSION
REALITY MAXIMUM ECONOMY SECRET MISSION FAST FAVOR EDGE TONE ENTER
LITERARY COFFEE SOLID LAID FAIR PERMIT RESPONSE TITLE JUDGE ADDRESS MODEL
ELECTION ANODE)

D.1.2 Another list of 1024 English words that we also used for training:

(one two threc four five six seven eight nine ten zero first second thrid fourth fifth sixth seventh eighth
ninth tenth eleven twelve twenty thirty fourty fifty sixty seventy eighty ninty hundred thousand miliion
and or no not yes right wrong I am he she it is they we are them their there you her him his when what
where how who clue glue whoever however never nor neither ither with between among come go stay
stand sit set up down lefi north south west east easy wet dry cloth cloths help find reach straight the this
had been have man woman men women boy girl mister send male female mail sex type write read book
news listen radio receive office room door window glass chair couch board desk disk computer key table
breakfast lunch dinner light dark darkness turn on off of that pen pencil rubber money paper wallet coin
iron copper dictionary speak talk speaker walk pavement streel car bus airplane plan air thin thick wide
narrow coal wear get take leave fly bed recorder sheets mat hell hill heaven good god bad well will nice

fine friend fricndship mate wife husband son daughter brother sister father mother uncle ankle under

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

154

over round around circle circular rectangle triangle square dog cat animal pet bet bite byte hi bye buy by
way preserve keep cnglish united states america britain british language asia cuorope latin africa
australia pole earth sun star planet sca dust day night moon lake river fish boat machine saturday sunday
monday (uesday wednesday thursday friday week weak month year happy birthday decade century age
old voung vouth lady king queen prince princess bishop rabbi kitchen rule ulcrabcdefghijklmn
0 p qQrstuvwxy zeqgual enter close open delete kill back front in out beside behind middle lock look
print_home house end beginning begin stop start numbers eat drink food frozen hot cold water rain snow
hail drag drop lift move copy push pull kick shoot save rescue dead death life live cave wave waive
remove put without inside outside upside cool breeze warm boiling beling ball foot head hair cut make
do spray gel color colour ears eyes nose forchead eyebrows lashes mouth cheek neck nick name tecth
tooth tongue smell sniff shave smear beard shoulders chest breast billy stomach ache button rear beam
leg thigh knee foot feet toc shoes trousers scissors pair pant plant wear skirt short long sleeves shirl
blouse wool cotton nylon plastic real fake ring rang hand thumb finger nail polish hip muscles bone
skeleton cord brain mind your own business digest smoke cigarette heart love hurt liver lever leave
depart arrive departure arrival rival enemy drive peek give draw amount sum subtract add multi multiply
divide conquer win lose loser winner lost found miss mess mistake missing park away far near here hear
see touch taste lick suck blow wind sky dive swim swimmer sub super script marine logy science
scientist college university wake moming evening afiernoon dawn dusk sleep gold golden goose once
twice triple tuple upon was were be time clock forest desert dessert every all none at for youngest eldest
big biggest small smallest tiny full empty clever stupid genius laugh ed because why much many too lot
again also into fire wood would like gave took taken given cake bake bottle cup spread lips kiss poke
meal meet meat chicken beef pork sandwich cheese tea coffee mid last late carly came met little older
thirsty hungry say said spoke spoken eaten rub listen disturb distribute attribute fight war battle missile
space ship piece please me mine certain clear dusty answer question any shall should nothing anything
something some more enough began chop clouds tree leaf loaf axe cow bull duck black white yellow red
blue purpule green gray dirty clean nizar radi mabroukeh traiming artificial neural networks to
pronounce arabic text test exam speech simulator thesis master doctor paticnt degree jordan amman
watch soon sooner later earlier slip arm bandage gone went hint just as appear disappear ask self himself
herself itself themselves selves myself less bother slow quick speed wheels distance same different than
then if else punish mean meaning word world report country Ictter sentence paragraph compose let hold
work job money free both using use trouble terrible can could sure bread together gather whether
weather reward shared point pin bring brought thing think tought thought teach luck lucky pick special
ordinary saw fell fall falien roots beautiful ugly pure careful instead inn hotel flat floor flour toast before
after bed safe danger dangcrous endangered barn bar soup plate fork knife know now spoon afterwords
remind forward backward landlord landlady lord able ability unable try tried fail succeed fallen success
depress depressed outgoing other each stick stuck fast spend next previous current seems notice note still
bird follow along tell told tall become became firm loose through lend borrow village city capital amaze
amazing all until dig digging ficld farm ground play us shout loud deep shallow drop dropped rush

hurry people nation national international united art artist faculty engineer lawer mathematician

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

152

phoneme phonctic voice sound file physician dentist nurse ill process procede precedence carry usuil
usually unusual kept across town wonder wander band stare great top bottom course knew serious kid
kidding joke joking so whole part sad worry about from declare hide hidden sight view picture imagine
imagination marry merry heard lead led lid tin place palace very high low law maximum minimum daze
althuogh though break broke magic magical via magician spell held bride groom gloom want wine beer
spot matter stranger known acknowledge famous barrel drain claim simple complex complicated
mountain gun apple banana orange system tomato potato further map mat bat blast fade rib chin did
does done beat blood bleed even ahead hat tip active awaken awake site side cook pool sing song bereau
caught catch destroy build source shy shame attack peace tie latter union yard few zone raise increase

decrease lower vision mission mark mouse garbage net ocean rotate)

D.1.3 An English Children Story:

The following is the story of the Golden Goose:

{Once upon a time, there was a man who had a wife and three sons.

They all lived in a cottage on the edge of a forest.

The youngest son was called Simpleton, and everyone laughed at him because he wasnt clever as his
brothers.

One day the oldest son had to go into the forest to cut firewood. It would take a long time, so his mother
gave him a cake and a bottle of wine for his mid-day meal.

When he came to the forest, the oldest son met a little grey man.

» 1 am so hungry and thirsty,« said the little grey man. -Please will you give me a little piece of your
cake, and a sip of your wine?-

~Certainly not,» answered the oldest son. -if 1 give you any, I shall have nothing left for myself. Go
away.-

He began to chop at a big tree with his axe.

Soon the axe slipped and cut his arm, and he had to go home to have it bandaged.

So the second son went into the forest to fetch the wood. His monther gave him a cake and a bottle of
wine for his mid-day meal, just as she had given his brother.

Once again the little grey man appeared, and asked for a piece of cake and a sip of wine.

The second son was as selfish as the oldest son.

»If I give you any, I shall have less for myself - he said. ~Go away and don-t bother me.»

In the same way as his brother, he was quickly punshied for being so mean.

For, as soon as he began lo chop, the axe slipped and cut his leg. He had to limp home without any
wood.

~Father,~ said Simpleton, -why not let me go and cut the wood?-

«Oh no, said his father. »You know nothing about using an axe or working in the forest. Both your

older brothers have hurt themselves. It would be asking for trouble to let you go as well.-

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1%

~Please, father, let me go.~ Said Simpleton again. »Im sure I could do it.-

At last his father said the he could go. and Simpleton sct off. All he could take with him was some stale
bread and a bottle of sour beer. There was no cake or wing left in the house,

As soon as Simpleton came to the forest, the little grey man met him,

» am so hungry and thirsty,~ he said, ~Please will you give me a piece of your cake, and a sip of your
wing?

«l'm sorry,- said Simpleton, ~there is only stale bread and sour beer. You may share those with me if you
wish -

When they sat down to eat together, Simpleton found that the stale bread had turned into rich cake. and
the beer had changed into wine,

After they had eaten, the little grey man said, ~As you have shared your meal with me so willingly, I will
reward you.~

He pointed to one of the trees. ~Chop down that treg there, he said, »and you will find something you
that will bring you good luck.~

Simpleton picked up his axe and set to work to chopp down the special tree.

When it fell he sw, sitting amongst the roots, 2 beautiful Golden Goose. It had feathers of purest gold.
Simpleton picked the goose up very carefully. Then instead of going home, he st out for a nearby inn to
stay for the night. Before he went to bed himself, he put the goose safely to bed in a barn.

The jandlord of the inn had three daughters. When the saw the goose, each of them longed for cne of the
golden feathers.

The oldest went to the barn first and tried to pull out a feather, Then she found that she was unable io tet
go!

When the other two sisters came they tried to help. But as soon as they touched their sister. they stuck
fast to her. All three has 10 spend the night in the barn, stuck to the goose and to each other.

The next moming Simpleton came in, tucked the goose under his arm, and set omt. He didnt seem to
notice the three girls who were still unable to let go of the bird or each other. They had to follow him.
They were still tripping and stumbling along after Simpleton when they met a priest. He told them it was
naughty to run after Simpleton like that and tried to stop them, But he too became firmly fixed and had
1o go with them.

As they went through the village, the sexton was amazed to see the priest following simpleton and the
three girls.

He called out 1o the priest, Dont forget you have a christening this afiernoon,» and caught at the sleeve
of the priests coat. Then he 100 stuck fast and had to follow the others, willy nilly.

They all went on together, following Simpleton and the golden goose, until they saw two peasants diggin
in a ficld,

«Help us,» shouted the priest and the sexton together.

The two men dropped their shovels and rushedto help. They tried to pull the others away, bul they too

stuck fast.

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

1654

There were now seven people in the little procession, all firmly stuck fast to the golen goose. Simpleton
went happily on his way carrying the goose. He didnt scem to notice anything unusual.

Simpleton wasnt sure where he was going. He just kept on waling, his lucky goosc tucked safelv under
his arm.

Over hill and dale. across fields and moors, he went with his goose. Through towns and villages they
went. where people stared in wonder at them and their little band of followers.

At last. near the end of the day, they saw a great city on top of a hill,

Simpleton decided to go to the city, and the little procession, of course, had to go with him.

Now in this city reigned a king with one daughter. This princess was so serious that she never laughed
and, because of this, the whole city was sad and gloomy.

The king was very worried about hisdaughter. He declared that whoever made her laugh could marry her
and become a prince.

A simpleton came near to the city, he heard the king's promise. So he led his little procession straight to
the palace.

The princess, who looked very sad, sat gazing down from a window.

No sooner did the princess see Simpleton, the goose, and his seven weary followers than shee began to
taugh. Indeed, she laughed and laughed and laughed as though she would never stop.

The laughter of the princess broke the magic spell that had held the followers fast to the golden goose.
They at once set out on their way home.

Simpleton, still clutching the golden goose, went straight to the king and asked for his reward, the
princess as his bride.

The king was very happy to se his daughter laugh, but he didnt want her to marry a ragged woodcutter
like Simpleton.

«Not so fast.» said he king. ~First you must bring me 2 man who can drink all the wine in my cellar.-
Siimpleton thought at once of the little grey man and set out for the forest. There. on the very spot where
he had found his golden goose, he saw a stranger, looking very sad.

« What's the matter?- asked Simpleton

«I'm so very, very thirsty,« said the stranger.

o1 think I can help you,~ said Simpleton. ~Come with me and you shall have a whole cellarful of wine to
drink.»

They went to the kings palace, and the stranger sat down and began to drink and drink and drink.
Before the sun set that day, every barrel in the king's cellar had been drained dry. Once more Simpleton

went to the king to claim his bride.)

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

155

D.2 Arabic Text Sets:

D.2.1 A set of 1024 commonly used Arabic Words:

The following set was formed from everyday use of commonly used Arabic words:

ploas el o 5 plade ISy S 300 il o s 3580 s g il g iy S s B sl 08 o))
1t letay L patsie 1S5 pam B s B b sy lllal (S Cinase g Uk g w3 W (3 o S S
Hid o S 0 plana olaan of yia o8 48 g o jlaa 61 348 (513 0 yad iy g 030 3paa by b3 o
o i (4 Sl Adaion A€ 48 5 diada) il) 90 50 aly s S pala s dals 4 paa 350 Gl
oelh e Sl b Gaedll s gl Gad pical jmalelil peal a8y pa) 5 diA sase seal
AES 38y A8 o) g AT JE Al glo ua Sodbing p yus DA g} juind ASH A (RT 1 U0 jad plisall o pygdal
aiiie ol je Se elin o o8 Jduis ol daka iy ol sl jal ol ja i g polin) dlliaj a iSa
wa) by Gty gaea AT il iy UG LS e el oo g Jiad e ey JLad can (358 das e
o S el 45 iral Ciyan seliah o e ol il 4k pce ¥ e o jlae o i dd
iy o i lind o o il g G O 303 Uga ks e e g agina Mo Jing flad
Sy pas a3 aae Gy jhe i e f gud ks 42l oS Al il el LiS gad 3 iS4,
oy Amandl uradll o lag VY Gl Jaall ¢ VDD 1 aalYt caandh G Al sl b o o G ikl S
s elad ke 5ya8 Baries i el g Uadh cins i e 5 i i S gin el g
Bl g g s plan 4Sau s Aalod lie By iy g ta gay Sus e s g9 i e
o e Sy i 53 a0 pda A8 5 it dasa o iy jed o 50) p s el edase (e S
feab @ e ey)0 e fima Cilaad o nbag ki ey s o Ja pries oliae AL L 4l JUild
e a0 jitedle AiBzla) aal s AS Gadla e sla S i g 4y 5 0h) (5 n ey i sdlas
ediga 43SLa Al g 02bs dilas Jale puunkaline 68 dae cals pgdey i yaa ada lUae Gl
ORI 2l g A0En Wy pane aiSa (3 sy il o guiny Lo i (i oy 418 iy n G Bl e s0a
el sl el o I U SV e saat s pde G A R A s dny 2D
O il s ol W sl JW LK (Rl ptad jgme ol Lae o (3l iy ana LS ilall aadill (ali)
Lo 2l ASleal ad 48 jre oy 22 Al paall daalall Glae o W D age Al Ja 4 g6 L
o) ph Agial a3 81 e gad ail Las oS 72 Ml (g gl 210 0138 adican 4555 1S5 5al Ay ggan 43 spar
Oe Aa U ALl 585 s Gladile §3a Sl ce) G padaa ala 2SSl DL pa) ae B0 e
D3k o 4B gl ol Al ol Jan iy S 55 am gy i e e o2 618
LA) 2l J gia o iaa Hlld LIS g0 oz g B el B S oY wan 8 jac e
act {53La pudid e elb il dlin (o pe Auhd ol 3 oolgd 32 Smamy Sncae AL J2G

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

158

b A 5> Anilas Qs gosag 4abis 138 030 a3 Jlad 35000 40 44 Yol 3l e libal 4gpeoe S
s iy s el 3y s e s adahs pudle iga o e ol qa)l Jela i Fhuap S 5 4
el pam el e o IS u O pSudelan e DA JF am b o) Je dlie uud By gyl 3o (Pl Jlad
SYIETY S PUNPTUTREQU TR TL J5 WINPT WS SV TR RUSPL LS SRR e
ol Joaae Gpae Slac e o o lapd S (52562 paese plise Jid¥ o O (ele oy JUSS
S oL e e dalis lall ol e Gitan Gian (Bl Gyl 4giia 6Lt cag pha s iy Capd Sl
S 55 G ey i el Bet IS i il gl o SN el eda g e S Jid o)
28 S b diii e cladosnans g eissm paali Gla 43y Elie) da e 33 33 il
Shad AT 0 Al e g3 guadh 8 aipnal gy sl iy M Cppbuadh B b Gyl 3 g 7 g0 afinen
Pl 7 gassa f piaa (A8 Juide sl Gy Y pur (i S Adana i A Ga gl (Jila a6 0
o) N g3 papli Ol (g 8 U8 A el s 3985 eledd i g i s ple iy eladd s g
oo dbsiaa o B S yad adl B pd g8 G 5 el A 5al Ll Cu oS 3 el 48 S 4 9
pine 4 4iain o 55 JAde e 3ok 0 3 S aiia pal i 0 5 gy Oy e J
L) 4l dny 58 4 5 aane Alus il ded) Al Lx s o b Slaaly y elaaS el o sle p LS
G sk (Bl 4y poms 45 g i o Slaf L L 5 50 b (it Al pr ala A€ g e g0
a1 al et Guld el g ol Gluilh (3 gia Ao Jlact o jlal dan ol 955 4005 S 4 i
G U st ats 4l g sl s 2oy 08 (B i iila galal il ally pllls s
a8 da ol) Caaly il SAal g jilia a5 age Ciga iy e 8 (3 s Jlay & alaa
SIS Y 552 (e s cn Lagne e e L (0 2 050 Uy 1o s i i il i
e gl €Sy S I b st sl 3 53 8 a0 0o AT (S S st lass by s
any gt 5 $S s hac) G Al b ppllae s ya e b el GYT Gl G adlas aa 4
Y bt ol yoa i goh olaf 03 pHia 2y iy Covasa dda 3l Labe Bl delads padsy o1t 4gdyy juinny peiany
e e e dydiall 3 pa galt Jaball LAl Gy ab e ildad UGRS3 elialal als
Cppeand A 3B pid o Sy S Gy 38 J g o 58 O S o A8 I e IS s
52 3 sba Jaa oo ete oo 5l A i 4 5l s palt 453 i) e 5 A bl
i i) i piea oy Geaas gk sban dan st pbyi S jpdies Cuche pdant]
s3=Sa e Gt dali s 4a e spce Aida fiuse o janiuae flasind) ded daad oandl g lass gl
4iad e Jole gl fad Jgae G dil slide el 4a g Fie Ay pa a5 38 A e b oY (Buale
Do Alinn (i A g) A e (S Jioobe eg 5 0 35 oD S1SH oyl Jfi4y e b ggia

(Asa (o 2 S 5 (B i Jas S\ prsncll o g1 | i e paadh 4S5 5 i iy a1y pedudy Gy

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

157

D.2.2 A Corpus of Continuous Arabic Text:

The following is an Arabic story by the famous Arab writer Gibran Khalil Gibran:

oMk

oSl 1By Aiaal) A A dasa Jall f Jaall (g3 peall A58 e ped! i
31D 51 yad a8 (5% younall e i ey LS Cirany 83 YU D
2 el Gy sl jlis oShitiuuad | gllgh 34 ga ji allaall pafonf aiid LI 5
iy il e e Capes e Aabia 7 silag Slaly eliaill @M 5 seall bl
b ya cplinaall ded 45 4 Unibin colanll (118 5 lilkes LSl Sl 2y jm 4 3 5eY) 4iaie (e
ST ETRRI-LUIUTETPISTN P K ST I EUSPVANPY JU L IFPTE REUAREL T
ol Clals
(S5 4SRN g aitanall pasdy 0535 5 ag¥ 50 Qs st (s el &b Gl Ly
La jan M assd Al pyyn o da g shhasl pdl jynge pia a8 S 2 jia o
ALy adaadls Lk Mids agilal)
ol il gt il Aa gy i g e llaald el il) i WY1 L S 4
IV 5 Jaad § 50 Lo Sy | o i) AL Gl 8 4e T Ll iy San g (5 g et
i 3 ks Lgim lo Lgli AiSaal ol o 5520 o s i
g ria &y il g cdpiadl g peally oaend o 2y 51008 ¢ LSy Sy 5 Gt
ian)} 93yl Blaadt 3 shalidiey Laakad 715)1 alle e g8 0208 Ly catin 13" -) yaiall
selidiop yplaadh 4 ipali 3Uali o3 Ll g gl g eliail) g 4SO 28 51N € dnisny

oS el 0y Baalall (e Y Ly (6355 g o sl Y1 (g b gie el Palie

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

158
S i La S il y bl e 5 o sl Jiua Taaull ge L ge 4 Jal
st g g Yl Gl galy bl g Ungia Glat T 0 Sy g3l KK lal
Lo Candy g hanty bass Cpauall Jant of 5508 02l ba joa (M Jiblh Ciana M
(o 33 @i o g edadl g

Lo Sty il Cud S o385 (e Abhlll el clin jaill dn s e p gl Condiil W

Cpald Gyl

D.2.3 An Arabic Children Story:

The following is the Arabic version of the story of “Little Red Ridinghood™:

i Mo ghaloin o33 iy el Gl LSl il g g iadl any oy o Siae)
sl gd 3806 of Gans 5 Lgtan a3 S 1Y) i b

il G e i U e el Lgd B gl ey g g sladt A Sy il
138 Sl Y st Lhaa cilS Lgiaad djla O il adal 4l il g

L can a1l JB e st 3 Sy il

Y Lakel (g gl AL gl Jaad g el Fam)y 3l 1By) e
B Gy A il ol (a8

il) a8 G b Gl U ael O sy J5

£ e il g cdmg ya U el b I3 1l g eaall i 8

A D4 5 sty aad gy el e 03 Lealdd il eaalt A
Mgt aud) o auy g Lol dusi o goaadl s (4 a oyl bl s
VAR sl Ao Lema e ltan G Y e Gl by Gl e
i e ol i ey W e ian il LSan iy, s

158 oLl AR W ey) U R G O gyl 3 il

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

159

Alsaal a5 5o g glally San el il Bl 2
Ll Ol 3 Ban g B alh gb g ol 03 il ks

(@i by 0 S e 1y Lhaa JS5 Ol o padd

e Glun Y o S glie (i sl el

i b S Il o,

i 1 s a0 S (U cpad ol ol

PO IPRUEUEW PENEIRRLA b

A oy ST o o€ Aiad 1023105 y4gn y 0p S S

opmll e pdll il

Pyl g gali il g S Gcel) plaailia ol o8l

Mg ey by) s e

Ll Jal el o

S P IRV VRSVY UL § PRROR ENCH) DT FRUR PRYLS- P

oaal ot Jila ¢ A5 Y I B gesad e Ly 5 Wl Lehaa

sl g 4 iy Al il e Sl ally e

leie S Jud A b s e 4ila Ul o il e el 5y Gl cals
el 4 ga i geals g guald el 330 (3 Ul manaioaadl S oaal iy Bl 5 Y
b e A ey y g8 el 5 43 380 (398 aoandl I 5) g g ol
RUNERE TN IPPS T PR NYE S TN PRICH PR L ISQE VPN | FURPC LR P PRRLINEN
il e S a1l a3 IS e Ju Y 5 stadl qand CulS LY IS oanll i
awa hlabad sl By lbas b ey

(b adtdl ae dld Jlo gabu dalidh o3 533 holy, y il L - Lgdan L 20

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

160

Al s jlan o 323 UIA Gy y ¥t e pha (g 3 (g iaa Kia sl e Bliall g
b jamn dlia o) and j genndl e aginll AU o ggie oy 5 ST LS o L Agiad Bl 48 a0
aalilods o ooyl i e noania gl NS (e JUbB Sad) Sae Y Cadial daiia 4ilisa
oy Labaal seaall IS Ao xldl slianYt i€ 6 g ganth yo galiall go gill Al 5 5 ySuuall el
3533 (bl ya dlant 5 4y Sl iaf 21 Ladid e g dgial 4Bl LYY lin S s jland B s i
bV cntion 43 il oy o pdlai ol pall Saely § piab 5 LS o il 508 auia o gl (o plialp Lot
sl

o3l Lty g g anialy) eV e 3S 5 5 4l ol) pbhe (Saalips il S 8 Ul i L

aeldial gy g4y e il Gdadd Al y ainll 4 Al pgian lan S g 4gsad Y1)
(Aclda) yanay 5oy i

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

161

D.2.4 A Corpus of Continuous Arabic Text from the Daily Newspaper:
Following is a three-paragraphs piece of text from a the newspaper, used to train and test
NETtalk2:
Mal lall adlall 4 2 el i dnand o g (a5)
1 gt e Ll il y il et vie Mo plaSh g aileil gy 5B 935 5 mall lia 1Sl iy
& 9ot alisa 8 Yo pdal eland y (et 4ty a4 e Lisua
ole Gadd il ya je 5 eiSal Ll J ¥ e Lelaial atie o))l A dalall llaiaY) Lad calS

TAVE RTRIW IR P JUREL RUPVERH IPRTC I [PU I EN gt BRs BN S PR T

D.2.5 dther Arabic Corpora:

Many other corpora of continuous Arabic text were used, some are:

1- A small story by Gibran Khalil Gibran:

Sy o 4 ime godali ol Hapall e on JaaG e Sie ing b Lad y Al jias da) OS)
Al i Lagin S (o 3 R Loy i ol 6 e 4o 5 OV o0 0 (S

AGally 0t lslaall 5540 (e Juadh 13a g3 la ST L S0 AS 3 S0 Sad aiy B lead 5 0l S Ly

st il B G Y1 80 hee IS S jalt B sl jaia elils fada 1 Yl 3l Moy o S adaad

"l play o
e Sl Lo 5 1 Jad (e ol L L0 a3 3 DS o) Sie JBa Jalis g el S Lgie deladl 3
Y5 i] Y AnS 8 L a5y e ke 5 Ll 4dds T 00 Sl Ay gle puti A pla ol

(.0 2k Jeay o 43 5kl o3 Jie as O ¥ (S S gl

2-
L o i L)y A Aind Al anglall Cum i S geanl 238 e Gl 48l a3)
eiilu‘JJAﬂijdjiﬂ%w‘iL.POLﬁY‘uh?yﬂ!qﬁaﬂ Jmﬂ‘wlk.m&&bﬂ‘@ﬁugu];

JEt aibia b asS) ab S ool 128 3 GladY e e S caadis 0 g jadl)5 gp staad

_All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

162
asks

g,.ua.“ ua.m Bﬁu.b @G&m‘m 4*14413\ Qw‘ ok ol

-~ e sluel

45 gy 2l P

<l
(Sl J,J.»- ST
Sl s 2l

U B y3 0 e 87l

el oW i aall A2l o LFla Y Ll Ly WS e il s Ol Jelus 2
RN £ el 5 4 eLaid SV sl bl 3,5 0 e 5 003 i n 8T s) 5 e
S —dar GL¥l Lt il 5 35718 cliglal e ellaws Y1 dpandl ISl st 5 ST (b a)
Ak il B s 5 SIS ol e WBjid 1o rilaall e OF ik
Wolnie bord pf g & (5 ld W et 3l ot deaalt 02t NETHALK" (3 o 35 cods Lzl 13 (3

Errory Ldasd) o aldd L saWi gl by ol el ds Lo 4,5 J 04 (NETtalk2)

-(Resilient Backpropagation) ¢ >} i LesYi , (Backpropagation
sads e 68 pas Y e e el Gl Je 36 .2 "NETtalk" Joo o3 g OF iledt o gl il
SN G LsaslF g d Gl il oal el DAY tedadl e O (Ll e 05,08 pe

é_uu;.i@iﬂ..u;w‘m,LL,;J_}sc.-a”tf.:sud,q*_..ﬁ;mm&ﬁ.:m_sf‘wwu@.u,w

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

163

ez U odn 5 . (Hidden Layers) owis onsib plaszal g ol jad 3l Jo (NETtalk2) o
alas sl ¢ A Lagia Jb’ O CnRdF opzat rl..L-;'_:....'l xe YA Ly M3y f.._....;J'l
3 Lk ik g oo ol NETHAlk2 o bl adld (05, b (fle) Al (o padl phisezd ie Ll

L30E98 900 Ly ramn
k

A WEY

All Rights Reserved - Library of University of Jordan - Center of Thesis Deposit

	

